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Abstract— Epilepsy is a chronic disorder that leads to 
transient neurological dysfunction and is clinically 
diagnosed primarily by electroencephalography. Several 
intelligent systems have been proposed to automatically 
detect seizures, among which deep convolutional neural 
networks (CNNs) have shown better performance than 
traditional machine-learning algorithms. Owing to artifacts 
and noise, the raw electroencephalogram (EEG) must be 
preprocessed to improve the signal-to-noise ratio prior to 
being fed into the CNN classifier. However, because of the 
spectrum overlapping of uncontrollable noise with EEG, 
traditional filters cause information loss in EEG; thus, the 
potential of classifiers cannot be fully exploited. In this 
study, we propose a stochastic resonance-effect-based 
EEG preprocessing module composed of three 
asymmetrical overdamped bistable systems in parallel. By 
setting different asymmetries for the three parallel units, 
the inherent noise can be transferred to the different 
spectral components of the EEG through the asymmetric 
stochastic resonance effect. In this process, the proposed 
preprocessing module not only avoids the loss of 
information of EEG but also provides a CNN with high-
quality EEG of diversified frequency information to 
enhance its performance. By combining the proposed 
preprocessing module with a residual neural network, we 
developed an intelligent diagnostic system for predicting 
seizure onset. The developed system achieved an average 
sensitivity of 98.96% on the CHB-MIT dataset and 95.45% 
on the Siena dataset, with a false prediction rate of 0.048/h 
and 0.033/h, respectively. In addition, a comparative 
analysis demonstrated the superiority of the developed 
diagnostic system with the proposed preprocessing 
module over other existing methods.  
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I. INTRODUCTION 

UE to alterations in neuroglial cells, neurotransmitters, or 

ion channels, the neurons in the brains of epileptic 

patients frequently generate abnormal activities [1]. When 

seizures occur, there is potential for disturbances in a patient’s 

awareness, movement, and other perceptual functions. 

Epilepsy patients experiencing irregular seizures in their daily 

life are at great risks, such as loss of control during driving 

vehicles and drowning during swimming. Although 

antiepileptic drugs can control the occurrence of some 

epileptic symptoms, they are not effective in approximately 30% 

of patients with epilepsy [2]. Therefore, it is essential to 

safeguard patients with epilepsy by monitoring and 

recognizing seizures. At present, the most commonly used 

clinical epilepsy diagnostic tool is multi-channel 

electroencephalogram (EEG), which records spontaneous, 

rhythmic electrical activity from brain cells. Although EEG 

has high temporal resolution, accurate diagnosis is time-

consuming and difficult, even for highly trained neurologists 

[3]. To provide patients with high-quality EEG diagnosis and 

reduce the workload of clinicians, developing intelligent EEG 

diagnostic systems is of great significance and has been 

actively studied [4]–[7]. 

In the early stages of related research, epileptic EEG 

diagnosis required manual feature extraction and classification 

using traditional pattern recognition algorithms. For example, 

a seizure detection system proposed in 1982 used a simple 

classifier with extracted time-domain EEG features for 

automatic diagnosis [8]. The work in [9] introduced a 

multivariate technique that can extract spatial EEG features 

for a support vector machine (SVM) to realize seizure 

prediction. The method in [10] performed discrete wavelet 

transform (DWT) on the original EEG signal and extracted 

frequency features based on the covariance matrix in different 

band. The extracted features were then injected into the 

support vector machine (SVM) to identify epileptic activities. 

In [11], to extract the epileptic information contained in the 

chaotic behavior of the brain, entropy-based features were 

fused with the DWT-based and time-domain features. The 

most prominent features were then fed to a random forest (RF)  
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classifier to distinguish the cerebral state of epileptic patients. 

The good diagnostic accuracy demonstrated that these 

machine learning algorithms are effective tools for epileptic 

EEG interpretation and classification. 

In contrast to traditional machine-learning algorithms that 

rely on high-quality handcrafted features, deep-learning 

methods that can automatically extract features have received 

wide attention in the past few decades. Among all deep-

learning frameworks, convolutional neural networks (CNNs) 

are one of the most successful methods for biomedical 

applications [12]–[14]. In particular, there has been an 

emerging trend in the construction of CNN-based epileptic 

EEG diagnostic systems in recent years. Because CNNs can 

eliminate the feature extraction operation, the work in [15] 

directly inputs the raw EEG signals to the CNN for seizure 

detection. The hybrid CNN and long short-term memory 

(LSTM) network in [16] automatically predict seizures of 

patients with epilepsy based on DWT-processed EEG signals. 

In addition, some researchers have combined traditional 

feature extraction and CNNs to achieve better epilepsy 

diagnosis performance. For instance, the work [17] treats a 

common spatial pattern as a low-dimensional feature and 

inputs it into a shallow CNN for a seizure detection method 

having high-sensitivity. By combining the short-time Fourier 

transform and CNN, [18] used the two-dimensional features of 

EEG signals and successfully improved the seizure 

predictability. Hence, based on the abovementioned studies, it 

can be concluded that in terms of classification accuracy, the 

CNN-based algorithms outperform traditional feature 

extraction-based machine learning methods in epileptic EEG 

diagnosis. The good performance of CNNs can be attributed to 

its multi-convolution kernel and weight replication 

characteristics. The former enriches the EEG features 

automatically extracted by the CNN, whereas the latter 

reduces the complexity of the network and saves considerable 

computation time. 

Irrespective of whether traditional machine learning or 

CNN-based methods are used for epileptic EEG diagnosis, 

preprocessing methods are required to remove the 

physiological artifacts and measurement noises that pollute 

EEG signals [19]. Commonly used filtering methods include 

traditional filters represented by band-pass filters [20], wavelet 

transform methods represented by the DWT [21], and 

empirical mode decomposition [22]. However, owing to the 

overlapping spectrum of noise and EEG, the above methods 

inevitably cause a loss of effective EEG information while 

removing noise components. It is generally believed that the 

loss of effective information negatively impacts the 

performance of a classifier [23]. 

Notably, weakly effective information can be amplified 

with the aid of noise perturbation in a specific nonlinear 

system [24]. In this process, noise is suppressed because of the 

energy transfer from the noise to information-carrying signals; 

thus, no effective information is lost. This counterintuitive 

phenomenon is referred to as the stochastic resonance 

(SR)effect, which has been widely studied in various weak 

signal amplification and noise reduction application scenarios, 

such as machine fault detection [25]–[27], visual perception 

[28] and binary classification [29], [30], and sensory 

enhancement of organisms [31], [32]. In the bioengineering 

field, the SR effect has also been used for MRI enhancement 

[33] and cardiac signal denoising [34], [35]. However, the 

nonlinear structure of these SR-benefited systems is limited to 

a single symmetric potential well, and to the best of our 

knowledge, there has been no relevant research on epileptic 

EEG processing. 

Inspired by the fact that brain asymmetry is favorable for 

bioinformatic perception [36], we propose an asymmetric 

stochastic resonance unit (ASRU)-based preprocessing 

module for a CNN-based intelligent epilepsy EEG diagnostic 

system. In this study, a residual network with 50 layers 

(ResNet-50) was selected as the CNN classifier because of its 

versatility and excellent performance [37]. The ASRU 

preprocessing module consists of three parallel ASRUs, 

wherein the preprocessed output from each ASRU is 

independently connected to the input channel of ResNet-50. 

The degree of asymmetry of the three parallel ASRUs is 

different, which changes the escape rate between the 

asymmetric potentials. Consequently, in the process of using 

intrinsic noise energy to enhance EEG, the noise-induced 

gains of each EEG frequency component are different. This 

leads to an effect similar to the attention mechanism in 

transformers [38], which enables each input channel of the 

CNN to focus on the information of different frequency bands 

in the EEG. It is worth noting that the nonlinear structure of 

the ASRU is an overdamped bistable potential well that has 

been proven to provide short-term memory capacity. 

Therefore, applying the proposed ASRU module not only 

prevents effective information loss, but also enhances the 

learning ability of the CNN. 

The remainder of this paper is organized as follows. In 

Section II, our intelligent epileptic EEG classification system 

is explained in detail, including the mechanism of the ASRU 

module, structure of ResNet-50, and adaptive parameter 

optimization strategy. In Section III, a performance 

comparison between the proposed ASRU module and baseline 

preprocessing methods with ResNet-50 is conducted on the 

CHB-MIT and Siena datasets. The CHB-MIT and Siena 

datasets contain multi-channel continuously recorded scalp 

EEG, which is more realistic and challenging. In addition, the 

experimental results of the comparison using different metric 

functions and classifiers are also presented in this section. In 

Section IV, the computational speed and hardware realization 

potential of the proposed method are discussed, followed by a 

comparison with existing methods. Section V presents 

conclusions and suggests future research directions. 

 

II. METHODOLOGY 

A. Deep learning-based epileptic EEG diagnosis 
process 

A schematic of the deep learning-based epileptic EEG 

diagnosis process adopted in this study is shown in Fig. 1. 

First, the information flow of multi-channel EEG signals  
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Fig. 1. Schematic of the overall deep CNN-based epileptic EEG classification and prediction process.  

 
intercepted by the sliding window were preprocessed to 

remove interfering components, such as physiological artifacts 

and device noise [19]. After preprocessing, the time-domain 

EEG signals were converted into frequency-domain 

information as the input to the deep learning module. This is 

because previous studies have pointed out that the statistical 

changes in epileptic EEG in different periods are obvious in 

the frequency domain [39]–[41]. At this stage, the EEG of 

each channel was converted to a power spectrum density (PSD) 

that can characterize the energy distribution of the signal in 

the frequency domain. Thereafter, the EEG PSD of all 

channels were arranged together, and the PSD energy diagram 

(PSDED) could be obtained, as shown in the bottom right of 

Fig. 1. The subsequent deep CNN can learn features of EEG 

samples. For each EEG sample, the CNN model produces two 

probability values: the probability of the sample being 

classified as a preictal recording (𝑃) and the probability of the 

sample being classified as an interictal recording (1 − 𝑃). For 

eliminating fluctuations in 𝑃 , referring to the previous 

research [41], a moving average method spanning 20 points is 

employed to smooth 𝑃. A seizure alarm is triggered when the 

smoothed 𝑃  exceeds a threshold of 50%, as shown in the 

bottom left of Fig. 1. 

 

B. Preprocessing by ASRU 
1) Nonlinear structure of the ASRU 
When a Brownian particle moves in an asymmetric 

overdamped bistable system under the influence of an external 

driving force 𝑠(𝑡) and a random noise 𝜉(𝑡), its dynamics can 

be described by the following simplified Langevin equation: 
𝑑𝑥

𝑑𝑡
= −𝑈′(𝑥) + 𝑠(𝑡) + 𝜉(𝑡),               (1) 

where 𝑥 is the trajectory of a Brownian particle. If 𝜉(𝑡) is 
assumed as Gaussian white noise with a noise intensity of 𝐷, it 

satisfies 〈𝜉 (𝑡)𝜉 (𝑡0) 〉 =  2𝐷𝛿(𝑡 − 𝑡0) . 𝑈(𝑥)  is the 

asymmetric potential function, which can be written as: 

𝑈(𝑥) = {
−
1

2
𝑎𝑥2 +

1

4
𝑏𝑥4, 𝑥 ≥ 0

−
1

2
𝑎𝐴𝑥2 +

1

4
𝑏𝐵𝑥4, 𝑥 < 0

,                (2)                       

where 𝑎 and 𝑏 are the structural coefficients that control the  

 

shape of the potential wells, and 𝐴  and 𝐵  are asymmetry 

coefficients. By considering 𝑈(𝑥)′ = 0, the extreme value of 

𝑈 (𝑥) can be obtained as: 

{
 
 

 
 𝑥+ = √

𝑎

𝑏

𝑥0 = 0

𝑥− = −√
𝑎𝐴

𝑏𝐵

.                              (3)                                

where 𝑥+  and 𝑥−  are stable extreme points, whereas 𝑥0  is 

unstable. Assuming 𝐴 = 𝐵 = 𝑘 , 𝑥+  and 𝑥−  are origin-

symmetric. In this case, as depicted in Fig. 2(a), adjusting 𝑘 

can change the depth of the left-half well of 𝑈 (𝑥) without 

affecting the width. For simplicity, we refer to this as ASRU 

with regulating depth (ASRU-RD). If we assume 𝐴 = 1/𝑘2 

and 𝐵 = 1/𝑘4, the depths ℎ± of both the stable points satisfy 

ℎ± = 𝑎/(4𝑏2). As depicted in Fig. 2(b), adjusting 𝑘 in this 

case can change the width of the left-half well of 𝑈(𝑥) without 

affecting the depth. Similarly, we call this ASRU with 

regulating width (ASRU-RW). Whether the well depth or 

width is adjusted, 𝑘 = 1 indicates that the ASRU degenerates 

into a symmetric stochastic resonance unit (SSRU). 
 

2) Numerical solution of the ASRU 
Generally, the analytical solution of 𝑥 cannot be obtained 

using (1). Hence, the fourth-order Runge–Kutta method was 

adopted in this study to calculate the numerical solution of 𝑥. 

The calculation process is as follows. 

𝑘1 = ℎ(−𝑈
′(𝑥(𝑛)) + 𝑠(𝑛)) + √ℎ𝜉(𝑛),             (4)                

𝑘2 = ℎ(−𝑈
′ (𝑥(𝑛) +

𝑘1

2
) + 𝑠(𝑛)) + √ℎ𝜉(𝑛)),        (5)                              

𝑘3 = ℎ(−𝑈
′ (𝑥(𝑛) +

𝑘2

2
) + 𝑠(𝑛 + 1)) + √ℎ𝜉(𝑛 + 1),   (6) 
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Fig. 2. (a) Potential function 𝑈(𝑥) with 𝑎 = 𝑏 = 1 and 𝐴 = 𝐵 = 𝑘. The 
depth of left potential well can be changed by adjusting 𝑘. (b) Potential 

function 𝑈(𝑥) with 𝑎 = 𝑏 = 1, 𝐴 = 1/𝑘2, and 𝐵 = 1/𝑘4. The width of left 
potential well can be changed by adjusting 𝑘. 

 

𝑘4 = ℎ(−𝑈
′(𝑥(𝑛) + 𝑘3) + 𝑠(𝑛 + 1)) + √ℎ𝜉(𝑛 + 1) , (7)                      

𝑥(𝑛 + 1) = 𝑥(𝑛) +
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4),      (8)             

where 𝑥(𝑛), 𝑠(𝑛), and 𝜉(𝑛) are the discrete expressions for 

𝑥(𝑡), 𝑠(𝑡) , and 𝜉(𝑡) , respectively. ℎ  denotes the calculation 

step size, which affects the accuracy of the calculation. ℎ was 

set to 0.1 in this study, in accordance with a previous study 

[35]. 

 

3) Denoising and output characteristic of ASRU  
Assuming that the system described in (1) can reach local 

equilibrium in sufficient time, according to the approximate 

solution of the Fokker-Planck-Kolmogorov equation [42], the 

quasi-steady-state distribution function 𝜌𝑠𝑡(𝑥, 𝑡)  can be 

expressed as: 

𝜌𝑠𝑡(𝑥, 𝑡) =
𝐿

𝐹(𝑥)
𝑒
∫
𝐸(𝑥)

𝐹(𝑥)
𝑑𝑥
=

𝐿

√𝐹(𝑥)
𝑒−

𝜑(𝑥,𝑡)

𝐷 ,       (9)                               

where 𝐿  is the normalization constant of the stochastic 

dynamics and 𝜑(𝑥, 𝑡)  represents the generalized potential. 

𝐸(𝑥) and 𝐹(𝑥) are the drift term and diffusion term of the 

stochastic dynamics, respectively. The mathematical 

expressions of 𝐸(𝑥) and 𝐹(𝑥) are as follows: 

𝐸(𝑥) = −𝑈′(𝑥) + 𝑠(𝑡) +
1

2
𝐹′(𝑥),              (10) 

𝐹(𝑥) =
𝐷

1−𝜏ℝ
,                               (11) 

with 

ℝ = {
−𝑈′′(𝑥+)    , 𝑥 ∈ [0, +∞]

−𝑈′′(𝑥−)    , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,                (12) 

where is the autocorrelation time of the noise term. 

Considering the Kramers-like approximation, the mean 

first-passage time of Brownian particles hopping between two 

stable points can be written as follows [43]: 

{
𝑇𝑥+→𝑥− = ∫

𝑑𝑥

𝐹(𝑥)𝜌𝑠𝑡(𝑥,𝑡)
∫ 𝜌𝑠𝑡(𝑦, 𝑡)𝑑𝑦
+∞

𝑥

𝑥+
𝑥−

𝑇𝑥−→𝑥+ = ∫
𝑑𝑥

𝐹(𝑥)𝜌𝑠𝑡(𝑥,𝑡)
∫ 𝜌𝑠𝑡(𝑦, 𝑡)𝑑𝑦
𝑥

−∞

𝑥+
𝑥−

.     (13)                           

The integral calculations in (13) are too complex to be 

calculated analytically. Hence, we used the steepest-descent 

approximation to simplify it as 

{
𝑇𝑥+→𝑥− ≈ 2𝜋|𝑈

′′(𝑥+)𝑈
′′(𝑥0)|

−
1

2exp [−
𝜑(𝑥+,𝑡)−𝜑(𝑥0,𝑡)

𝐷
]

𝑇𝑥−→𝑥+ ≈ 2𝜋|𝑈
′′(𝑥−)𝑈

′′(𝑥0)|
−
1

2exp [−
𝜑(𝑥−,𝑡)−𝜑(𝑥0,𝑡)

𝐷
]
. 

(14) 

The probabilities 𝑝±(𝑡) of the Brownian particles on either 

side of the potential well satisfy the following formula: 

𝑝+(𝑡) + 𝑝−(𝑡) = 1.                        (15)       

    Thus, the evolution of 𝑝+(𝑡)  can be described by the

 
 Fig. 3. The original input signal and the processed signal by an SSRU 
when (a) 𝐷 = 0, (b) 𝐷 = 1.2, and (c) 𝐷 = 5. The original input signal 

and the processed signal by an ASRU-RD when (d) 𝑘 = 2, 𝐷 = 0, (e) 
𝑘 = 2,𝐷 = 1.2, and (f) 𝑘 = 2,𝐷 = 5. The original input signal and the 
processed signal by an ASRU-RW when (g) 𝑘 = 2, 𝐷 = 0 , (h) 𝑘 =
2, 𝐷 = 1.2 , and (i) 𝑘 = 2, 𝐷 = 5 . The structure coefficients are 
normalized. 

                            

following master equation: 

𝑝+̇(𝑡) = −𝑝−̇ (𝑡) 

=
𝑝−(𝑡)

𝑇𝑥−→𝑥+
−

𝑝+(𝑡)

𝑇𝑥+→𝑥−
                           

=
1−𝑝+(𝑡)

𝑇𝑥−→𝑥+
−

𝑝+(𝑡)

𝑇𝑥+→𝑥−
.                 (16) 

For simplification, we first consider a situation in which the 

noise is zero-mean Gaussian white noise, and the input is a 

sinusoidal signal with an amplitude of 0.35. Assuming 𝑎 =
𝑏 = 𝑘 = 1, 𝑈(𝑥) becomes a symmetric bistable potential with 

a transition threshold of 0.385 [44]. For such a bistable system, 

the output signal-to-noise ratio (SNR) can be obtained by 

integrating (16) and calculating the autocorrelation function. 

Combined with (14), one can know that the output SNR 

satisfies the following relationship:        

  𝑆𝑁𝑅 ∝
1

𝐷2
exp [−

ℎ±

𝐷
].                     (17)                                  

Equation (17) shows that the output SNR of the ASRU first 

increased and then decreased with an increase in 𝐷 . As 

illustrated in Fig. 3(a), when 𝐷=0, the output of the SSRU can 

vibrate only on one side of the potential well, and the 

amplitude was reduced. When the noise intensity was 

appropriate (𝐷=1.2), the sinusoidal signal submerged by the 

noise was amplified and accompanied by a significant 

weakening of the noise, as shown in Fig. 3(b). If the noise 

intensity in the SSRU is excessive, the effective information 

of the sinusoidal signal cannot be extracted from the noise, as 

shown in Fig. 3(c). As can be observed in Figs. 3(d)–(i), the 

cases of ASRU are similar to those of SSRU. The intuitive 

difference between them is that, when the well depth is 

adjusted, the output signal should have a greater amplitude on 

the side of the deeper potential well, as depicted in Fig. 3(e). 

Likewise, when the well width is adjusted, the signal should 

stay for more time in the wider potential well, as depicted in 

Fig. 3(h). 

Subsequently, we assumed a complex signal containing 

multiple frequency components as the input signal of the  
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Fig. 4. (a) Ratio of PSD output by ASRU-RD at different 𝑘  to PSD 
output by SSRU. (b) Ratio of PSD output by ASRU-RW at different 𝑘 to 
PSD output by SSRU. The structure coefficients are normalized. 

 
Fig. 5. Schematic of the ASRU preprocessing module. 

 

ASRU. If the left well was deeper, the left side of the potential 

barrier was steeper, which increases the damping term −𝑈′(𝑥) 
near the barrier. Accordingly, there is an increase in the 

𝑇𝑥−→𝑥+ required for Brownian particles to transition from the 

left to the right well.  For the high-frequency component of the 

input signal, a large 𝑇𝑥−→𝑥+ is not conducive to its escape from 

the left potential well. In contrast, in this case, it is conducive 

to the transition between the two potential wells for the low-

frequency component of the signal. Hence, one can conclude 

that the increase in 𝑘  in the ASRU-RD makes it easier to 

enhance low-frequency information, and vice versa. Taking 

the EEG signal as an example, Fig. 4(a) shows the ratio of the 

PSD output by the ASRU-RD (denoted as “aPSD”) at 

different 𝑘  to PSD output by SSRU (denoted as “sPSD”). 

Consistent with the previous analysis, when the left potential 

well was deeper, the low-frequency energy was larger than the 

high-frequency energy of the processed EEG signal. In 

contrast, when the left potential well became shallow, the low-

frequency component of the ASRU-processed signal was more 

suppressed than the high-frequency component. Similar to the 

case of the ASRU-RD, narrowing the well width makes the 

left side of the potential barrier steeper. This implies that 

𝑇𝑥−→𝑥+  is increased, which has the an effect similar to 

increasing the well depth. Hence, as displayed in Fig. 4(b), 

one can show that the decrease in 𝑘 in ASRU-RW makes it 

easier to enhance the low-frequency information of the EEG 

signal, and vice versa. 

 
5) Structure of ASRU preprocessing model 
In the image processing field, where CNNs originate, visual 

images are usually decomposed into RGB data. This operation 

can utilize the multi-channel advantages of the CNN and help 

the CNN extract image features from different dimensions. 

Using this as the inspiration, the structure of the ASRU 

module for EEG preprocessing was set to take full advantage 

of the multi-channel advantages of the CNN, as shown in Fig. 

5. Firstly, the raw EEG recording intercepted by the sliding 

window of each channel was input into three parallel ASRU 

units. Then, for each ASRU, the processed EEG recordings of  

 
Fig. 6. Schematic of ResNet-50. The structure of the residual block 

with identity shortcut connection is shown in the blue block below. 
TABLE I  

Floating point operations (FLOPs) of the ResNet with different layer 
numbers 

Layer 

number 

ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152 

FLOPs 1.8× 109 3.6× 109 3.8× 109 7.6× 109 11.3× 109 

 

all channels were combined and Fourier transformed to obtain 

a PSDED graph, which was used as input for the CNN. 

Notably, the asymmetry type (regulating depth and width) and 

structure coefficients (𝑎, 𝑏) of the three parallel ASRUs were 

concordant. This can reduce the computation cost in parameter 

optimization and ensure that the asymmetry of the three 

parallel ASRUs is different. Using this setup, the energy of the 

corresponding frequency components is different for the 

output EEG signals from the three parallel ASRUs.  

From the analysis of Fig. 3 and related studies [33–35], it is 

clear that there is an optimal noise intensity that optimizes the 

performance of the SR system. Generally, if the noise intensity 

in the signal is known, the parameters 𝑎 and 𝑏 can be adjusted 

to change the shape of the SNR curve of the SR system [44]. 

By matching the optimal noise intensity required by the 

system and the noise intensity in the input signals, the noise 

energy can be maximally transferred to the effective 

information. However, since the noise intensity in the 

recorded biological signals is uncontrollable, it is difficult to 

manually adjust parameters without prior knowledge of noise. 

To automatically select the optimal parameters of ASRU for 

epileptic EEG classification, the Optuna optimization 

algorithm was adopted in this study. Optuna is an open-access 

heuristic optimization algorithm [45], which is suitable for 

users without the relevant technical background to utilize. 

When using Optuna to optimize the ASRU, several points 

should be noted regarding Optuna. First, the search space of 

Optuna is dynamically constructed, which means that users do 

not need to participate in designing internal variables. Second, 

Optuna performs sampling during optimization, including 

relational sampling using multi-parameter correlation and 

independent sampling with individually evaluated parameters. 

These two sampling strategies make Optuna suitable for 

optimizing systems with highly correlated hyperparameters. 

Third, the setup of Optuna only involves importing packages, 

defining the objective function, and specifying the 

hyperparameters to be optimized. In this work, the sensitivity 

of the entire system to predict seizure was set as the objective 

function. 

 

C. ResNet-based CNN classifier 
According to the universal approximation theorem, given a  
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sufficient capacity, a single-layer feed-forward network is 

sufficient to approximate any function. This may require the 

network to be sufficiently large, leading to overfitting. 

Therefore, researchers have developed deeper network 

architectures. However, due to the gradient vanishing, the 

training and testing errors of a multilayer plain CNN network 

without a shortcut connection increase as the network deepens 

[37]. To solve this problem, some researchers introduced the 

structure of an identity shortcut connection into the traditional 

deep neural networks. Because the gradient information of the 

former layer is retained in that of the deeper layer through 

identity shortcut connection, we only need to ensure that the 

gradient of the shallow layer is not too small to avoid gradient 

vanishing. Deep neural networks with this structure are also 

known as ResNet, which can improve its performance by 

increasing the number of hidden layers [37].  

In this study, the most widely used CNN-based ResNet was 

adopted. As shown in Table I, the computational complexity 

increased with the number of layers. Considering the 

computational performance and overhead, we chose ResNet-

50 as the deep-learning module for the epileptic EEG 

classification system. The specific network topology of 

ResNet-50 is shown in Fig. 6. 

 
D. Cross-validation-based training and testing 

In order to reduce the randomness in performance 

evaluation, the proposed epileptic EEG diagnosis model 

requires a testing and training scheme based on the subject-

specific leave-one-out cross validation to establish a testing 

and training scheme [41], [46]. Assuming a patient 

experiences 𝐿  seizures, their EEG recordings are partitioned 

into 𝐿 non-overlapping segments, where interictal period are 

roughly of equal duration and the paired preictal period is 

approximately a half hour. When 𝐿 − 1 segments of the EEG 

data are used as the training set, the remaining segment is held 

out as test set. During training, the diagnosis model is trained 

only on 80% of the data in the training set, while the 

remaining 20% is used to validate for preventing overfitting. 

The training process stops based on the maximum iteration 

number and the error rate on the validation data in each 

training epoch. Specifically, the model either completes 

training after 50 iterations or stops training when the 

validation error rate continues to rise for four consecutive 

epochs. After the training of the diagnosis model is completed, 

it is benchmarked with the testing set following the procedure 

depicted in Fig. 1. After using all 𝐿 segments as the testing set, 

the performance metrics across 𝐿  independent evaluations 

should be averaged to obtain the cross-validation performance 

metrics. 

When conducting the aforementioned procedures, it is 

important to note that two additional strategies should be 

employed. The first strategy entails utilizing the random 

oversampling technique to augment the preictal samples in the 

training set until the length of preictal intervals is equal to 

interictal intervals [41]. This is intended to mitigate the 

negative impact of data imbalance on the sensitivity of 

ResNet-50. The second strategy involves eliminating samples 

from the dataset that is not suitable for benchmarking. For 

each patient, their EEG recordings are required to comprise a 

minimum of 3-hour interictal intervals and two occurrences of 

seizure [46]. If the duration between two epileptic seizures is 

less than 2 hours, the latter seizure should be excluded to 

prevent the postictal influence of the former seizure [47]. 

 

III. RESULTS 

For evaluating the epileptic seizure diagnosis, it is necessary 

to define beforehand the feature intervals in the prediction 

process, including the seizure occurrence period (SOP) and the 

seizure prediction horizon (SPH). The former denotes the time 

interval during which the seizure onset is expected to occur, 

while the latter refers to the period between the SOP and the 

epileptic warning alarm. Therefore, the SOP is located after 

the SPH. If the true seizure onset marker appears outside the 

SOP interval, the prediction is considered a failure; if it 

appears within the interval, it is considered successful. 

According to previous studies [41], [48], [49], we set the SPH 

to 5 minutes and the SOP to 30 minutes. To avoid repeated 

creation of alarms in a short time, a refractory period was 

implemented, which can prevent the occurrence of a second 

warning alarm within 30 minutes of the initial one. 

In this work, three basic metrics used to evaluate the 

performance of diagnosis models, namely accuracy, sensitivity 

and false prediction rate (FPR), were adopted. They can be 

calculated by the following equations: 

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
,                  (18) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,                       (19) 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑖𝑚𝑒 (𝑠𝑒𝑖𝑧𝑢𝑟𝑒−𝑓𝑟𝑒𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 𝑝𝑟𝑒𝑖𝑐𝑡𝑎𝑙)
,     (20) 

where TP and TN denote the true positive and true negative, 

respectively, and FP and FN denote the false positive and false 

negative, respectively.  To avoid conflict between FPR and 

sensitivity, we took SF as another evaluation metric, which 

can be obtained using the following equation: 

𝑆𝐹 = √
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦2+(1−𝐹𝑃𝑅)2

2
.                 (21) 

The higher the SF, the better is the ability of the system to 

classify the positive examples. 

 
A. Baseline preprocessing methods 

To validate the superiority of ASRU in improving the deep 

convolution network for identifying epileptic EEG, four 

traditional preprocessing methods were selected as baseline 

methods for comparison. The first and second baseline 

methods are the widely used bandpass filter and discrete 

wavelet transform (DWT), respectively. The DWT was 

performed with a Daubechies wavelet of order six. In the 

bandpass filter, 50 Hz interference was targeted with a filter 

between 0.5–45 Hz [50]. Irrespective of whether a bandpass 

filter or discrete wavelet transform method was used, the 

treated EEG signals lost some information. Hence, some 

studies directly used untreated EEG for classification without 

additional preprocessing, which is also the third baseline 

method adopted in this work. The final baseline method is a 

bistable SSRU, which has been previously used in cardiac 

signal processing [35]. To ensure a fair comparison, all 

modules, except for the different preprocessing methods, had 

the same settings.  
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B. Performance on the EEG of children 
TABLE II  

Seizure information of selected patients from the CHB-MIT dataset 

Patient Gender  Age EE recording 
length (h) 

Number of 
eligible 

seizures  

Chb01 
Chb02 

Chb03 

Chb04 
Chb05 

Chb06 

Chb07 
Chb08 

Chb09 

Chb10 
Chb11 

Chb13 

Chb14 
Chb16 

Chb17 

Chb18 
Chb19 

Chb20 

Chb21 
Chb22 

Chb23 

Female 
Male 

Female 

Male 
Female 

Female 

Female 
Male 

Female 

Male 
Female 

Female 

Female 
Female 

Female 

Female 
Female 

Female 

Female 
Female 

Female 

11 
11 

14 

22 
7 

1.5 

14.5 
3.5 

10 

3 
12 

3 

9 
7 

12 

18 
19 

6 

13 
9 

6 

34.6 
27.6 

28.9 

23 
19.1 

30.9 

24.6 
11.5 

54.3 

29.3 
32.5 

18.3 

9.6 
10.7 

16.9 

28.9 
26.4 

21.7 

19.2 
11.5 

21.1 

6 
3 

6 

3 
5 

7 

3 
5 

4 

7 
3 

6 

6 
5 

3 

4 
3 

5 

4 
3 

5 

 

  
Fig. 7. (a) Precision, (b) sensitivity, (c) specificity, and (d) F1-score of 
epileptic EEG classification on the CHB-MIT database by the ResNet-
50 with different preprocessing methods. 

 

In this study, the proposed approach was first tested for 

classification on EEG datasets from children with epilepsy. 

The selected datasets were from the publicly available CHB-

MIT database, which can be obtained from PhysioNet 

(https://physionet.org/content/chbmit/1.0.0/). The CHB-MIT 

database contains scalp EEG data from 23 children within a 

few days of discontinuation of antiepileptic drugs. Most of 

these data were collected through 23 channels with a 256 Hz  

 
TABLE III  
Seizure information of selected patients from the Siena dataset 

Patient Gender  Age EE recording 

length (h) 

Number of 

eligible 
seizures 

PN01 

PN03 
PN05 

PN06 

PN09 
PN13 

PN14 

PN16 
PN17 

Male 

Male 
Female 

Male 

Female 
Female 

Male 

Female 
Male 

46 

54 
51 

36 

27 
34 

49 

41 
42  

13.48 

12.53 
5.98 

12.03 

6.83 
8.65 

23.47 

5.05 
5.13  

2 

2 
3 

5 

3 
3 

4 

2 
2 

 

sampling rate, including 844 h of continuous EEG recording. 

In our analysis, EEG signals recorded by all channels of the 21 

qualified patients were used, and their information is presented 

in Table II. The selected EEG comprised 96 seizure 

occurrences. In this work, for the EEG signals of children, a 

sliding window length of 4 seconds was applied. 

In Fig. 7, four performance metrics for epileptic EEG 

diagnosis on the CHB-MIT database using ResNet-50 with 

different preprocessing methods are presented. Compared with 

the no-preprocessing case, the bandpass filter-assisted ResNet-

50 achieved lower FPR and higher accuracy but lower 

sensitivity. This can be attributed to the large amount of 

effective information lost during the filtering process using the 

bandpass filter, which also resulted in a lower SF as shown in 

Fig. 7(c). As compared to bandpass filters, DWT can retain 

more effective information while removing artifacts in the 

EEG [51]. Therefore, it can be observed that DWT-assisted 

ResNet-50 performed better in all four metrics than bandpass 

filter-assisted ResNet-50. Unlike bandpass filters and the 

DWT, the overdamped stochastic resonance unit does not lose 

effective EEG information. This explains why SSRU can 

further improve the epileptic EEG diagnosis performance of 

ResNet-50 compared with DWT. As ASRU enables ResNet-

50 to better focus on the difference in information at different 

frequency intervals of EEG, the ASRU-assisted ResNet-50 

can achieve a sensitivity of over 96%, an FPR below 0.06/h, 

an SF of over 96%, and an accuracy of over 98% while 

regulating both the width and depth of the potential well. 

Compared with ASRU-RD, the sensitivity of applying ASRU-

RW was 1.04% lower, the accuracy was 0.37% lower, while 

the FPR was 0.013/h lower, and the SF was 0.12% higher. 

Thus, on the CHB-MIT database, the performance of two 

ASRU-assisted ResNet-50 systems is comparable but 

significantly superior to that of ResNet-50 assisted by other 

preprocessing methods. 

 

C. Performance on the EEG of adults 

To further validate the proposed method on the EEG 

datasets of adults with epilepsy, the publicly available Siena 

database was selected (https://physionet.org/content/siena-

scalp-eeg/1.0.0/). The Siena database contains scalp EEG data 

from 14 adults within a few days of discontinuation of 

antiepileptic drugs. Most of these continuous EEG recordings 

were collected through 29 channels with a 512 Hz sampling 

rate. In our analysis, EEG signals recorded by all channels of 

the qualified 9 patients were used, and their information is  
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Fig. 8. (a) Precision, (b) sensitivity, (c) specificity, and (d) F1-score for 

epileptic EEG classification on the Siena database by the ResNet-50 

with different preprocessing methods. 

 

presented in Table III. The selected EEG comprised 22 seizure 

occurrence. Similar to processing the children’s EEG, a 

sliding window length of 4 seconds was set. 

In Fig. 8, four performance metrics for epileptic EEG 

diagnosis on the Siena database using ResNet-50 with 

different preprocessing methods are presented. Overall, the 

performance of bandpass filter-assisted ResNet-50 is superior 

to that of ResNet-50 without preprocessing but inferior to 

those of ResNet-50 assisted by other preprocessing methods. 

Similar to Fig. 7, the ResNet-50 assisted by DWT performs 

worse than the ResNet-50 assisted by SSRU. In contrast, the 

performance improvement achieved by applying ASRU to 

ResNet-50 is significantly greater than that of applying other 

preprocessing methods. Compared with ASRU-RW-assisted 

ResNet-50, the sensitivity of ASRU-RD-assisted ResNet-50 is 

the same, the FPR is 0.016/h lower, the SF is 0.82% higher, 

and the accuracy is 1.47% higher. Unlike the classification of 

children’s EEG, the ASRU-RW lost its advantage over the 

ASRU-RD in FPR and SF. Therefore, on the Siena dataset, the 

performance of ASRU-RD-assisted ResNet-50 is better to that 

of ASRU-RW-assisted ResNet-50. Notably, the performance 

metrics of two ASRU-assisted ResNet-50 in Fig. 8 are all 

lesser than those in Fig. 8. This may indicate that the adult 

EEG signals of the Siena dataset are more difficult to classify 

than the child EEG signals of the CHB-MIT dataset. 

 

D. Comparison with other learning systems with ASRU 

In addition to ResNet-50, ASRU can be used as a feature 

extractor and denoising module for other classifiers.  

 
TABLE IV  
Performance comparison among different classifiers with different 
preprocessing methods on CHB-MIT datasets 

Classifier Preprocessing Sensitivity 

(%) 

FPR 

(/h) 

SF 

(%) 

Accuracy 

(%) 

SVM none 89.33 0.492 72.66 64.38 

SSRU 93.33 0.395 78.65 69.21 

ASRU-RW 94.67 0.137 90.58 89.07 

ASRU-RD 94.67 0.160 89.49 88.76 

k-NN none 88.00 0.469 72.66 65.39 

SSRU 92.00 0.303 81.60 70.58 

ASRU-RW 94.67 0.132 90.84 89.12 

ASRU-RD 96.00 0.126 91.80 89.55 

ESN none 92.00 0.653 69.54 59.57 

SSRU 93.33 0.366 79.77 65.86 

ASRU-RW 96.00 0.189 88.87 83.54 

ASRU-RD 96.00 0.177 89.39 83.80 

 
TABLE V  
Performance comparison among different classifiers with different 
preprocessing methods on Siena datasets 

Classifier Preprocessing Sensitivity 

(%) 

FPR 

(/h) 

SF (%) Accuracy 

(%) 

SVM none 88.46 0.545 70.35 55.22 

SSRU 92.31 0.337 80.35 62.33 

ASRU-RW 96.15 0.167 89.88 86.81 

ASRU-RD 96.15 0.156 90.48 86.28 

k-NN none 88.46 0.441 73.99 58.23 

SSRU 92.31 0.285 82.55 66.19 

ASRU-RW 96.15 0.169 89.88 90.50 

ASRU-RD 92.31 0.182 87.23 89.76 

ESN none 84.62 0.586 66.61 55.50 

SSRU 88.46 0.402 75.50 61.01 

ASRU-RW 92.31 0.285 82.55 83.09 

ASRU-RD 96.15 0.208 88.11 84.35 

 

Experiments were conducted on both the CHB-MIT and Siena 

datasets with SVM, k-NN, and echo state network (ESN) 

classifiers separately. The first two classifiers represent 

conventional machine learning methods, and the ESN 

represents a neural network classifier without convolution 

operations. A linear kernel was selected for SVM. For the k-

NN classifier, the number of neighbors was set to 10. The 

basic framework of the ESN classifier is the system used in 

[52]. The node number in the reservoir part of the ESN was set 

to 5000, and tanh nonlinearity was selected as the activation 

function.  

The experimental results for the CHB-MIT datasets are 

shown in Table IV, while the results for the Siena datasets are 

shown in Table V. When no preprocessing method was used, 

the SVM, k-NN, and ESN did not perform well in classifying 

epileptic EEG with low SNR. For SSRU, compared with its 

combination with SVM and k-NN, its combination with ESN 

achieved the greatest performance improvement compared no 

preprocessing case. This is because the dynamic relaxation 

characteristics of the overdamped system enable it to provide a 

system with short-term memory capability [53], which is one 

of the basic abilities required for an ESN to save input 

information for a short time and learn its characteristics [54]. 

ASRU-RW and ASRU-RD significantly improved the 

performance of all three classifiers. This is due to the 

frequency domain features extracted by the ASRU while 

improving the EEG SNR. This also proves that ASRU can be  
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TABLE VI  
Comparison of average processing time among different preprocessing 
methods 

Method Processing time (s) 

Bandpass filter 0.00989 

DWT 0.01009 

SSRU 0.10764 

ASRU 0.31952 

 

used to enhance the performance of various classifiers when 

classifying epileptic EEG, in addition to the classifier based on 

the depth learning method. 

 

IV. DISCUSSION 

The results of the study demonstrate the superiority and 

versatility of the proposed ASRU as a preprocessing method 

for epileptic EEG classification. On the children EEG dataset, 

the ASRU enables ResNet-50 to obtain around 98% sensitivity. 

On the Siena dataset, although the sensitivity of two ASRU-

assisted ResNet-50 dropped around 95%, only one seizure was 

identified incorrectly. These indicate This can be attributed not 

only to the fact that ASRU does not lose effective information 

in the EEG, but also to the fact that it enables the classifier to 

better distinguish information of abnormal neuronal activity in 

different frequency bands of the epileptic EEG. However, as 

the ASRU in the software has to rely on an iterative numerical 

solver such as the fourth-order Runge–Kutta algorithm, its 

computation speed is expected to be relatively slow compared 

to many traditional preprocessing methods. Table VI presents 

the time required to process a 4 s EEG frame intercepted by 

the sliding window using the different preprocessing methods. 

The results show that the average time required for the ASRU 

to process a 4 s EEG frame intercepted by the sliding window 

is approximately 32 times that of the average time required for 

the bandpass filter. At present, most classifiers used for 

epilepsy classification and seizure prediction tasks only 

require EEG signal fragments of less than 10 s; therefore, the 

processing time of ASRU will not exceed 1 s, and hence, this 

has little negative impact in clinical practice. This testing 

procedure was performed on a GeForce RTX 1050 notebook 

GPU with 6 GB memory, which is not an advanced hardware 

for implementation. If the hardware configuration can be 

improved, the computational speed of the fourth-order Runge–

Kutta algorithm for solving the ASRU can be further boosted 

by several orders of magnitude [34]. 

It is worth noting that an overdamped bistable potential well 

can be implemented by a hardware with relatively low 

complexity. This indicates that ASRU can be integrated into 

the back-end of an EEG recording device, which is not cost-

effective for some of the more sophisticated preprocessing 

methods [55]–[57]. As hardware-based preprocessing can 

avoid being subject to the von Neumann bottleneck that 

software-based algorithms are subject to, the ASRU 

implemented by hardware has the potential to achieve faster 

processing speeds on hardware than those listed in Table VI. 

Besides, traditional filters weaken the energy of the EEG 

signal when noise is suppressed. Hence, traditional filters 

implemented by hardware usually need to be accompanied by 

the use of low-noise amplifiers to compensate for energy loss 

when suppressing noise [58]. In contrast, the ASRU can  
 
TABLE VII  
Average computation time comparison among different classifiers 

Classifier Dataset Computation time (s) 

SVM CHB-MIT 35.88 

Siena 8.13 

k-NN CHB-MIT 0.37 

Siena 0.30 

ESN CHB-MIT 268.74 

Siena 95.34  

ResNet-50 CHB-MIT 12.46 

Siena 6.53 

 

amplify the EEG signal by utilizing intrinsic noise energy 

through the SR effect. This makes the ASRU hardware 

capable of realizing low-power-consumption EEG pre-

processing hardware. 

Table VII shows the average computation time of different 

classifiers assisted by ASRU to complete training and testing 

for one patient on two datasets. Among the classifiers, 

ResNet-50 exhibited a shorter computation time than that of 

SVM and ESN on the same dataset. Although algorithms such 

as ESN can speed up the operation by reducing the number of 

nodes in its reservoir part, it will lead to a decline in 

calculation accuracy. In addition, the computation time of 

KNN is much shorter than that of other classifiers. However, 

its FPR values are one order of magnitude higher than those of 

ResNet-50 on both datasets, indicating that KNN may lead to 

significant false alarm issues. Although increasing the training 

data may improve the FPR of KNN, it would also lead to a 

skyrocketing training time for KNN because of its lazy 

learning property [59]. Therefore, to account for both the 

computational speed and performance, the ASRU is more 

suitable for combination with the CNN classifier for epileptic 

EEG signals. 

Over the past few decades, many different methods have 

been proposed for automatic diagnosis of epileptic EEG. Table 

VIII presents the performance comparisons of the ResNet-50 

with the proposed ASRU and some recent impressive methods 

on the CHB-MIT dataset. Wang et al. [41] improved the 

resolution of raw EEG signals using a DWT method. In the 

prediction process, the deep CNN with the directed transfer 

function achieved an FPR of 0.08/h. Li et al. [46] achieved 

95.50% sensitivity in epilepsy diagnosis by extracting and 

integrating important intrarhythm spatiotemporal features 

from multi-channel EEG signals using graph CNN. To 

preserve the spatiotemporal coupling of the epileptic cortex 

under different rhythms, preprocessing on EEG signals was 

omitted. Dissanayake et al. [60] preprocessed the EEG using 

Mel filter banks and synthesized subject-specific graphs with 

the obtained features using a deep graph-generating network. 

Thereafter, a classification-graph neural network was used to 

identify the status of epileptic EEG, which achieved an 

accuracy of 95.4%. Pandey et al. [61] extracted hybrid 

temporary features from EEG filtered using a finite impulse 

response (FIR) filter. Using a hybrid optimization algorithm, a 

deep LSTM network achieved 96.7% sensitivity to the 

obtained hybrid features. The methods [10] and [16] were 
TABLE VIII 
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 Performance comparison among ResNet-50 with ASRU and some existing methods on CHB-MIT datasets 

Authors (Year) Preprocessing 

method 

Classifier Sensitivity FPR (/h) SF Accuracy 

Wang et al. (2020) 

[41] 

DWT Deep CNN 90.80% 0.080 91.40% - 

Li et al. (2021) 

[46] 

No processing Graph CNN 95.50% 0.109 92.36% - 

Dissanayake et al. 

(2022) [60] 

Mel filter bank Graph Neural 

Network 

94.47% - - 95.38% 

Pandey et al. 

(2022) [61] 

FIR filter Deep LSTM 96.71% - - 89.91% 

EPMoghaddam et 

al. (2022) [10] 

DWT + Covariance 

matrix 

SVM 93.56% 0.090 92.29% 99.1% 

Singh and Lobiyal 

(2023) [16] 

Butterworth 

bandpass filter 

ResNet-50+LSTM 93.70% 0.056 94.08% 94.50% 

Hu et al. (2023) 

[62] 

DWT Hybrid 

Transformer 

91.70% 0 95.90% 89.00% 

This work ASRU-RW ResNet-50 98.96% 0.048 96.56% 98.03% 

This work ASRU-RD ResNet-50 97.92% 0.061 96.44% 98.40% 

 
TABLE IX  
Performance comparison among ResNet-50 with ASRU and some existing methods on Siena datasets 
Authors (Year) Preprocessing 

method 

Classifier Sensitivity FPR (/h) SF Accuracy 

Dissanayake et al. 

(2022) [60] 

Mel filter bank Graph neural 

network 

96.05% - - 96.05% 

Pandey et al. 

(2022) [61] 

FIR filter Deep LSTM 94.83% - - 92.59% 

Fatlawi et al. 

(2022) [63] 

DWT KNN 72.59% 0.049 84.60% 93.79% 

Fatlawi et al. 

(2022) [63] 

DWT Adaptive random 

forest 

93.13% 0.033 94.93% 96.44% 

Zhao et al. (2023) 

[64] 

Bandpass filter CNN+Transformer 97.40% - - 97.87% 

This work ASRU-RW ResNet-50 95.45% 0.049 95.27% 96.63% 

This work ASRU-RD ResNet-50 95.45% 0.033 96.09% 98.10% 

described in the Introduction section. Notably, although the 

residual network in [16] connected with a LSTM was deeper 

than the ResNet-50 adopted in this work, their sensitivity, SF, 

and accuracy were only 93.70%, 94.08%, and 94.50%, 

respectively. This further proves the superiority of ASRU as a 

preprocessing module compared with traditional filter. Hu et 

al. [62] achieved 91.7% sensitivity and 0/h FPR on the CHB-

MIT dataset by combining transfer learning with hybrid 

Transformer. 

Table IX presents the performance comparisons of the 

ResNet-50 with proposed ASRU and some recent methods on 

the Siena dataset. Fatlawi et al. [60] used a similarity-based 

adaptive window to improve the unbalanced distribution of 

items in the EEG data stream filtered by DWT. The use of 

KNN as the classifier resulted in a sensitivity of only 72.59%. 

By replacing KNN with adaptive RF, the sensitivity was 

significantly improved to 93.13%. However, its F1-score was 

only 76%, accompanied by a significant reduction in 

computational efficiency. Zhao et al. [64] employed a CNN to 

extract the local features and a Transformer to extract the 

global features of epileptic EEG. By coupling these two kinds 

of  features, they achieved a sensitivity of 97.40% and an 

accuracy of 97.87%. In addition, [60] and [61] also achieved 

sensitivities of 96.05% and 94.83%, respectively, in seizure 

detection on the Siena dataset. Whether the methods are listed 

in Table VIII or Table IX, compared with ResNet-50, their 

classifiers either have inferior performance or tend to be based 

on more complex fusion classifiers and deeper network 

structures. If only the comparison of numerical values is 

considered, the ASRU enables the original ResNet-50, which 

has a relatively simple structure, to achieve a performance 

exceeding that of most other approaches for diagnosing 

epileptic EEG signals. Nevertheless, some experimental 

details, such as the length of sliding window, are different in 

these studies. Thus, we suggest that more attention should be 

paid to the methods themselves rather than to the comparison 

with reference significance alone. 

 

V. CONCLUSION 

In this study, an ASRU-based preprocessing module was 

proposed for a CNN-based intelligent epilepsy EEG diagnostic 

system. In the ASRU, the noise in the raw EEG can be 

weakened by the damping effect of an overdamped potential 

well or can be directly transferred to the effective information 

of the EEG by the SR effect. In this procedure, EEG 

components that overlap with the noise spectrum are not 

removed; thus, effective information loss, which can easily 

arise from traditional preprocessing methods, is avoided. In 

addition, by paralleling three ASRUs, which differ in their 

asymmetric parameters, ASRU enables each input channel of 

the CNN to focus on the information of different frequency 

bands in the EEG. This effect can be analogized to the 

attentional mechanism or RGB decomposition in the computer 

vision field, which can further enhance the CNN performance. 

In the experimental section, the proposed ASRU combined 

with ResNet-50 was benchmarked on the CHB-MIT and Siena 

datasets for epilepsy classification. Compared with other 
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preprocessing methods, ASRU enabled the highest 

performance improvement of ResNet-50, achieving about 98% 

and 95% epilepsy detection sensitivity on the CHB-MIT and 

Siena datasets, respectively. In addition, although the ASRU 

was proven to work as a generalized preprocessing module in 

combination with other classifiers, it is more suitable for 

combination with CNN. Finally, the performance of ASRU-

assisted ResNet-50 was compared with that of other recent 

methods, the results of which further prove the superiority of 

ASRU over other preprocessing methods. 

However, the proposed ASRU module has some limitations. 

For example, the ASRU can cause time-domain distortion of 

EEG information, which is not conducive to its integration 

with a temporal feature-based intelligent diagnosis system. In 

addition, when the length of sliding window become shorter, 

the ASRU may destroy the information in the EEG owing to 

the transient dynamics at the beginning of the calculation. 

Hence, if the EEG fragment intercepted by the sliding window 

used for classification is too short, the proposed method may 

negatively impact the classifier. In this case, this problem can 

be solved by overlapping short EEG frames with a longer 

frame. However, this increases the computational burden. For 

future improvements, we recommend that three directions be 

considered. The first is to improve the CNN connected with 

ASRU. Several improved variants have been proposed based 

on the traditional ResNet-50 algorithm [65, 66]. Moreover, 

many excellent CNNs have been constructed in the field of 

intelligent seizure detection [16, 59]. Combining these 

networks with our proposed ASRU may enhance the 

performance. The second is to enhance the performance of 

ASRU. Commonly used improvement methods for nonlinear 

systems, such as cascading and adding feedback loops, can 

enhance the short-term memory capacity of the ASRU while 

boosting their ability to suppress noise. The third is utilizing 

some methods, such as Volterra model [67] and moment 

method [68], to estimate the noise intensity of EEG. This may 

aid in determining the potential parameters of ASRU without 

prior knowledge, thereby reducing the burden of parameter 

optimization. In addition to the above prospects for 

performance improvement, the hardware implementation of 

the ASRU and its integration with clinical EEG recorders are 

also promising. 
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