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Calibrated prediction intervals for polygenic 
scores across diverse contexts

Kangcheng Hou    1 , Ziqi Xu2, Yi Ding1, Ravi Mandla1, Zhuozheng Shi1, 
Kristin Boulier1, Arbel Harpak    3,4 & Bogdan Pasaniuc1,5,6,7 

Polygenic scores (PGS) have emerged as the tool of choice for genomic 
prediction in a wide range of fields. We show that PGS performance  
varies broadly across contexts and biobanks. Contexts such as age, sex 
and income can impact PGS accuracy with similar magnitudes as genetic 
ancestry. Here we introduce an approach (CalPred) that models all contexts 
jointly to produce prediction intervals that vary across contexts to achieve 
calibration (include the trait with 90% probability), whereas existing 
methods are miscalibrated. In analyses of 72 traits across large and diverse 
biobanks (All of Us and UK Biobank), we find that prediction intervals 
required adjustment by up to 80% for quantitative traits. For disease traits, 
PGS-based predictions were miscalibrated across socioeconomic contexts 
such as annual household income levels, further highlighting the need  
of accounting for context information in PGS-based prediction across 
diverse populations.

Accurate prediction of complex diseases or traits integrating genetic 
and nongenetic factors is essential for multiple fields from agriculture 
to personalized genomic medicine. The genetic contribution is typi-
cally predicted using polygenic scores (PGS) that summarize the joint 
contribution of many genetic factors1–4. A critical barrier in PGS use4–6 
is their context-specific accuracy—their performance (and/or bias) 
varies across various contexts such as genetic ancestry5,7–10, age, sex, 
socioeconomic status and other factors11–13.

PGS use large-scale genome-wide association studies (GWAS) 
to train linear prediction models of traits based on genetic variants; 
PGS are then employed in new data that often have different context 
characteristics from training (for example, different distributions 
of genetic ancestry, age, sex and social determinants of health)1,2,14. 
Even when testing is similar to training, genetic effects themselves 
can vary by contexts (for example, due to genotype–environment 
interaction, across age15, sex16 and genetic ancestry17–20), thus lead-
ing to context-specific PGS performance/bias. As genetic effects are 
unknown, allele frequency, linkage disequilibrium and differential 

tagging of true latent genetic factors can also lead to context-specific 
accuracy/bias in PGS-based predictions11,15,21.

To account for PGS accuracy variability, we use ‘trait prediction 
intervals’ that are allowed to vary across contexts. Trait prediction 
intervals denote the range containing the true trait value at prespeci-
fied confidence (for example, 90%) and provide a natural approach 
to model variability in PGS accuracy—narrower prediction intervals 
correspond to contexts where PGS attains higher accuracy11,22,23. Con-
sider the case of two individuals with the same PGS-based predictions 
for low-density lipoprotein cholesterol (LDL) of 180 mg dl−1. If the 
two individuals have different contexts (for example, sex) that are 
known to impact PGS accuracy (for example, R2 = 0.1 in men versus 
0.2 in women), their prediction intervals will also vary (for example, 
180 ± 40 mg dl−1 versus 180 ± 10 mg dl−1) with the second individual 
more likely to meet a decision criterion of LDL >160 mg dl−1 for hypo-
thetical clinical intervention.

In this Article, we introduce CalPred, a statistical framework 
that jointly models the effects of all contexts on PGS accuracy with 
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calibration. We assume that the EHR-linked biobanks are reflective of 
future patients within the same medical system.

Context-specific prediction intervals are implemented with two 
components: (1) context-specific mean ̂yi=𝔼𝔼 [yi|ci] as a function of 
context ci for each individual i; we also include PGS–context interac-
tion terms (PGS×C) to model varying PGS slope across contexts;  
(2) context-specific variance 𝔼𝔼 [(yi − ̂yi)

2|ci]= exp (c⊤i βσ) , where ci 
denotes contexts including age, sex, socioeconomic factors and 
genetic ancestry, and βσ  quantifies the unique impact of each context 
on variation of the prediction interval accounting for other 
contexts (Methods). Denoting prediction standard deviation (s.d.) 

as ̂σi = √exp (c⊤i β̂σ) , 90% prediction intervals can be derived as 

( ̂yi − 1.645 × ̂σi, ̂yi + 1.645 × ̂σi) . Our approach builds upon existing 
models for heteroscedasticity in probabilistic forecasting35–39. Existing 
works incorporate variable residual variances across different subsets 
of data (that is, contexts in our case) in addition to modeling prediction 
mean in standard regression analysis. Within genetics literature, such 
models have been used to detect genotypes associated with pheno-
type variability40–42. We build on such methods toward modeling PGS 
variable accuracy across contexts.

Widespread context-specific PGS accuracy across populations
Although PGS accuracy has been shown to vary across selected traits 
and contexts5,11–13, its pervasiveness remains unclear. We analyzed two 
large-scale biobanks in the United Kingdom and the United States (UK 
Biobank and All of Us) comprising >600,000 individuals spanning 
a wide range of contexts. We trained PGS for 72 traits in individuals 
previously annotated as ‘white British’28 (WB) from UK Biobank and 
evaluated these PGS in independent testing data from UK Biobank 
and All of Us. We focused on 11 contexts that span age, sex, socioeco-
nomic factors such as educational attainment and genetic ancestry (we 
used top two genetic principal components (PCs) to represent major 
axes of genetic variation; see ‘Population descriptor usage’ section in 
Methods). We used relative ΔR2 to quantify the impact of context to 

PGS accuracy, defined as 
R2
top quintile

−R2
bottom quintile

R2
all

, where R2
[subset] denotes 

R2 between PGS and residual phenotype computed in a given range 
of the context variable (top/bottom quintile as subsets for continu-
ous contexts; binary subgroups as subsets for binary contexts). We 
found widespread context-specific PGS accuracy across all traits and 
contexts studied (Methods, Fig. 2, Supplementary Figs. 1 and 2 and 
Supplementary Tables 1 and 2).

Context-specific accuracy in UK Biobank
All 72 traits had at least one context impacting their accuracy in UK 
Biobank data; 264 (out of 792) PGS–context pairs had significant var-
iable accuracy (P < 0.05/(72 × 11); Methods). Genetic ancestry had the 
most widespread impact on PGS accuracy: 70 of 72 traits had significant 
differences in PGS accuracy, with an average relative ΔR2 of −46% 
between top and bottom PC1 quintiles (Supplementary Fig. 3). Socio-
economic contexts also significantly impacted PGS accuracy; PGS 
accuracy significantly differed for 62 traits, with an average relative 
ΔR2 of −23% between top and bottom deprivation index quintiles. The 
direction of context’s impact depended on the trait being studied. For 
example, age significantly impacted 20 traits; rather than consistently 
increasing or decreasing accuracy, an older age led to increased accu-
racy for 14 traits (for example, high-density lipoprotein cholesterol 
(HDL) and white blood cell count (WBC) in Fig. 2) and to decreased 
accuracy for 6 traits (for example, LDL).

The widespread context specificity remained when testing data 
were matched to training data by genetic ancestry (Fig. 2). A total of 21 
(out of 72) PGS had at least one context significantly impacting their 
prediction accuracy; 42 PGS–context pairs had significant variable 
accuracy (P < 0.05/(72 × 11)). We replicated previously reported  

parameters learned in a calibration dataset. The key assumption is 
that the calibration data have a similar context distribution as new 
target individuals for whom PGS-based predictions will be employed. 
The motivation comes from precision health efforts that created elec-
tronic health record (EHR)-linked biobanks of patients from the same 
medical system in which PGS-based predictions will be implemented 
in the future24–27; in this context, the assumption is that the biobank is 
representative of future patients entering the same medical system.

We analyze data from two large-scale biobanks (UK Biobank28 and 
All of Us29) to find pervasive impact of context on PGS accuracy across 
a wide range of traits. All considered traits (N = 72) have at least one 
context impacting their accuracy11,13. Socioeconomic contexts have 
similar magnitudes of impact as genetic ancestry; for example, PGS 
accuracy varies by up to ~50% across ‘education years’ averaged across 
all considered traits in All of Us.

Next, we establish that CalPred provides calibrated predictions 
across individuals of diverse contexts in extensive simulations and real 
data analyses. For example, for LDL prediction, prediction intervals 
need adjustment by up to ~40% across contexts to achieve calibra-
tion. Context specificity of PGS prediction varies across traits and the 
studied population; for example, prediction intervals for ‘education 
years’ need adjustment by 94% in All of Us versus 10% in UK Biobank, 
reflecting the more diverse distribution of ‘education years’ and other 
social determinants of health in All of Us. For disease traits, incorporat-
ing context information is critical for calibrated predicted probability. 
In All of Us, PGS-based type 2 diabetes (T2D) predictions ignoring 
‘annual household income’ are miscalibrated across income groups, 
while incorporating income in the model leads to calibrated predic-
tions. Overall, our approaches provide a path forward to accounting 
for contexts in implementing PGS-based predictions for complex 
traits and diseases.

Results
Overview
We incorporate context-specific accuracy using prediction intervals 
that vary across contexts to maintain calibration: the true phenotype 
is contained within the prediction interval at a prespecified probability 
(for example, 90%; Fig. 1a). Naturally, as accuracy varies by context, 
the interval width needs to vary adaptively to maintain calibration 
(Fig. 1b). We distinguish among three types of prediction intervals 
(Fig. 1c). First, standard errors of PGS weights can be used to estimate 
prediction intervals that do not vary across contexts and/or individu-
als; these types of intervals are calibrated only when target perfectly 
matches training, which is impractical. Second, prediction intervals 
can be estimated empirically using a calibration dataset while ignoring 
context1,30–34; these types of intervals are robust to mismatches between 
training and testing, but are miscalibrated in particular contexts due 
to the variability of PGS accuracy. Third, prediction intervals that vary 
across contexts can be estimated using a calibration dataset by empiri-
cally quantifying the impact of each context on prediction accuracy; 
context-specific prediction intervals are adaptive and robust across 
contexts albeit at the expense of a more complex statistical model and 
larger calibration data that span all contexts.

Next, we distinguish three categories of data. Training, used to per-
form GWAS and PGS weights estimation, often involves meta-analysis 
of multiple datasets where additional context adjustment is impracti-
cal due to data access limitations or unmeasured context variables. 
Calibration, used to calibrate PGS with respect to trait-relevant con-
texts, such as EHR-linked biobanks within medical systems, reflects 
the makeup of the patient population. Testing, with new individuals 
for whom prediction models will be employed (for example, patients 
within medical systems not currently involved in EHR-linked biobanks). 
Motivated by clinical implementation of PGS-based predictions in 
medical systems where EHR-linked biobanks already exist, we focus 
on the problem of using calibration data to provide multi-context 
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variable PGS accuracy in WB individuals for diastolic blood pressure, 
body mass index, and ‘education years’ across contexts of sex, age and 
deprivation index11. As an example, LDL was significantly impacted by 
six contexts in WB individuals, with age having the strongest impact 
(relative ΔR2 was more than 100% between top and bottom age 
quintiles).

Next, we studied the unique impact of each context on variable 
PGS accuracy within CalPred model jointly accounting for all con-
texts (Methods and Fig. 2c,d). Context contribution to variable accu-
racy conditional on all other contexts was quantified with βσ, where 
larger absolute βσ  indicated more substantial variation in accuracy 
along a context variable (Methods). Effects of contexts to traits were 
largely independent. For example, both PC1 and deprivation index 
significantly impacted PGS accuracy for a range of traits in the joint 
model, indicating both had a unique contribution to variable PGS 
accuracy. We also found examples showing otherwise: the impact of 
the ‘wear glasses’ context on LDL accuracy can be explained by its 
correlation with age (Extended Data Fig. 1), while other contexts 
independently contributed to variable LDL accuracy. These results 
indicated the importance of jointly considering all measured con-
texts to correctly assess the unique contribution of each context. We 
found that contexts including sex, age, income and deprivation index 
had comparable impact on accuracy as genetic ancestry (Fig. 2e,f). 
The distribution of estimated effects of βσ  suggested predominantly 
higher prediction accuracy for individuals with higher income and 
lower deprivation indices, partly explained by different context 

distribution in training versus testing data: WB individuals had higher 
income and lower deprivation indices compared to the rest of the 
UK Biobank43 (Extended Data Fig. 2). We noted two context–trait 
pairs with large differences between single-context and combined- 
context analysis results even within UK Biobank WB individuals 
(sex–body mass index (BMI) and sex–waist–hip ratio (WHR)). This 
is because single-context analysis uses population-level R2 focusing 
on the predictive power of only PGS while combined-context analysis 
assesses the impact of context on phenotypical residual variance 
(Supplementary Note).

Context-specific accuracy in All of Us
We next turned to All of Us, a diverse biobank across the United States 
comprising more than 245,000 participants (Supplementary Fig. 3 
and Extended Data Fig. 3). Due to challenges in phenotype matching 
across biobanks, we restricted the analysis to 12 PGS and 11 contexts 
matching the UK Biobank analyses (Methods). All PGS had at least one 
context impacting their accuracy (Fig. 3 and Supplementary Tables 3 
and 4). A total of 89 PGS–context pairs were significant when consider-
ing all individuals, and 61 PGS–context pairs were significant when 
restricting to individuals with self-identified race/ethnicity (SIRE) as 
‘white’ (‘white SIRE’) (P < 0.05/(12 × 11); Methods). Prediction of cho-
lesterol and LDL was similarly impacted by a broad range of contexts. 
Prediction of ‘education years’ was impacted by contexts including 
age, BMI, employment and income, both when considering all indi-
viduals and considering the ‘white SIRE’ sample, consistent with the 
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Fig. 1 | Calibrated and context-specific prediction intervals via CalPred.  
a, Calibration of prediction intervals. We consider a set of individuals with the 
same point prediction (shaded area, left; dashed horizontal line, right). Each 
dot denotes an individual’s phenotype value. Intervals with proper coverage 
cover the true phenotype at prespecified probability of 90%; intervals with 
over-coverage are incorrectly wide; intervals with under-coverage are incorrectly 
narrow. b, Context-specific calibration of prediction intervals. We consider two 
subpopulations in different contexts. Context 1 has lower prediction accuracy 
and therefore wider variation around the mean, while context 2 has higher 
prediction accuracy and therefore narrower variation around the mean. Context-
specific intervals vary by context, providing intervals with proper coverage 

in each context. c, Different approaches for prediction intervals of PGS-based 
models. All approaches start with a set of predefined PGS weights derived from 
existing GWAS. ‘No calibration’: prediction intervals can be calculated using 
analytical formula without calibration data. However, these intervals are not 
guaranteed to be well calibrated. ‘Generic calibration’: these methods do not 
consider context information; they produce generic prediction intervals that 
are constant across individuals. ‘Context-specific calibration’: these methods 
leverage a set of calibration data to estimate the impact of each context to 
trait prediction accuracy; the estimated impact can then be used to generate 
prediction intervals for any target individuals matching in distribution with 
calibration data.
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socioeconomic contexts influencing PGS of sociobehavioral traits such 
as education11,44,45.

Interestingly, socioeconomic contexts had greater impact on 
context specificity in All of Us as compared to UK Biobank. For exam-
ple, ‘education years’ context significantly impacted 9 out of 11 traits 
with average relative ΔR2 = 50%, as compared to 2 out of 71 traits 
with average relative ΔR2 = 0.2% in UK Biobank (averaging across 
traits other than ‘education years’ itself ). This may be explained 
by larger variation of ‘education years’ in the United States and/or 
‘education years’ being more correlated with social determinants of 
health in the United States compared to the United Kingdom. When 
restricting analysis to a subset of individuals with more homogene-
ous genetic ancestry, the impact of ‘education years’ and income 
level was attenuated but remained significant; this is consistent 
with variable PGS accuracy across socioeconomic contexts being 
partially accounted for through their correlation with genetic ances-
try (Extended Data Fig. 4).

For completeness we also evaluated PGS for height46 and LDL47 
derived from multi-ancestry meta-analyses from PGS catalog48 (Fig. 3). 
We found that multi-ancestry PGS did not alleviate widespread 
context-specific accuracy. Higher income, ‘education years’, better 
employment or lower BMI predominately led to higher prediction 
accuracy across traits (Fig. 3e,f). Additional secondary analyses assess-
ing the consistency of fitted βσ coefficients across populations, as well 
as factors explaining context-specificity patterns, are reported in 
Supplementary Figs. 4–6.

CalPred is calibrated across contexts in simulations
Having shown pervasive context specificity of PGS accuracy, we next 
turned to CalPred to estimate context-specific prediction intervals 
accounting for context- and trait-specific variable accuracy (Methods). 
We performed simulations to evaluate calibration of CalPred in the 
presence of gene-by-context interactions16,49. For quantitative traits, 
we simulated individuals in two contexts with different heritability 
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arbitrarily chosen). Numerical values of relative R2 differences are displayed for 
PGS–context pairs with statistically significant differences (multiple testing 
correction for all 10 × 11 PGS–context pairs in this figure; two-sided P < 0.05/
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P < 0.05/(72 × 11)). CRP, C-reactive protein; BP, blood pressure; Edu, education.
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and an imperfect genetic correlation (the first context is used to train 
PGS; Methods and Fig. 4a). Due to genetic heterogeneity, PGS weights 
derived in the first context were not portable to the second context, 
producing a biased phenotype–PGS regression slope and prediction 
intervals with deflated coverage. With CalPred, prediction mean was 
calibrated via PGS×C terms; prediction interval lengths were adjusted 
to reflect different prediction precision across two contexts. For dis-
ease traits, we simulated individuals in two contexts under a liability 
threshold model with different disease prevalence and an imperfect 
genetic correlation (Fig. 4b and Methods). We first predicted disease 
probability with a logistic regression model for all individuals in both 
contexts, using PGS weights derived from the first context. As expected, 
this model ignoring context information was miscalibrated overall in 
each context. By incorporating PGS, PGS×C interaction and context 
variables, we determined disease risk predictions were then calibrated 
within and across contexts. We also simulated other scenarios of gene–
context interactions for both quantitative and disease traits and veri-
fied that our framework produced calibrated predictions (Extended 
Data Figs. 5 and 6).

We next evaluated CalPred in simulations where prediction accu-
racy varies across contexts similar to real data5,7,11 (Fig. 5 and Methods). 

We assessed calibration of prediction intervals both at the overall level 
and within each context subgroup (Methods). First, generic prediction 
intervals without context-specific adjustment had severe over-/
under-coverage within each context subgroup stratified by PC1, age 
or sex. As expected, bias of coverage tracked closely with accuracy 
across contexts. Second, CalPred context-specific prediction intervals 
were calibrated across contexts, by incorporating context-specific 
prediction accuracy in the interval estimation. We also performed 
simulations to find if CalPred performance depended on calibration 
sample size Ncal > 500 for accurate model fitting and an appropriate 
set of contexts in calibration (Extended Data Fig. 7). Parameter estima-
tion of βσ  was accurate with correctly specified model and robust with 
model misspecification (Supplementary Fig. 7). Overall, simulation 
results demonstrated that CalPred produces well-calibrated prediction 
intervals when contexts are measured and present in the data and 
highlighted the importance of comprehensive profiling of relevant 
context information.

CalPred yields calibrated context-specific predictions
We applied CalPred to produce context-specific prediction intervals for 
a wide range of quantitative traits. We first performed several analyses 
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a,b, Heatmaps for context-specific PGS accuracy for all individuals (a) and white 
SIRE individuals (b). Each row denotes a context and each column denotes a trait; 
overall R2 is shown in parentheses. Heatmap color denotes relative ΔR2: 
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pairs in this figure; two-sided P < 0.05/(12 × 11)). *PGS–context pairs that are 
displayed with nominally significant differences (multiple testing correction for 
11 contexts; two-sided P < 0.05/11). c,d, Heatmaps of estimated βσ  in CalPred 
model for all individuals (c) and white SIRE individuals (d). e, Distribution of 
estimated βσ  in CalPred model for each context across traits. f, The number of 
significantly impacted traits by each context (with two-sided P < 0.05/(12 × 11)). 
BP, blood pressure; Edu, education; TG, triglycerides.
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in All of Us to investigate best practices to model quantitative traits. 
We examined effects of PGS, context variables and PGS×C for trait 
prediction and found that PGS contributed the most in explaining 
trait variation (cross-trait average standardized effects with magni-
tudes of 0.23 compared to 0.22 of sex and 0.14 of BMI, the second 
and third largest contributors). PGS×C had significant contributions 
but with smaller effects than those from context variable themselves 
(Extended Data Fig. 8). Notably, inclusion of PGS substantially increased 
inter-individual variation in prediction s.d., suggesting that PGS is an 
important source of variation in prediction accuracy (Extended Data 
Fig. 9). PGS×C and modeling variance by contexts (VbyC) components 
had additive contribution in improving model fitting, capturing inde-
pendent aspects of traits (Supplementary Figs. 8–10).

We focused on LDL, an important risk factor of cardiovascular 
disease47. Calibration by context is particularly important because LDL 
prediction accuracy was impacted by many contexts, with the largest 
impact made from age (Figs. 2 and 3). We modeled prediction mean 
using PGS together with age, sex and genetic ancestry, and modeled 
context-specific prediction intervals using the set of contexts in Figs. 2 
and 3 (Methods). LDL prediction accuracy decreased with age (R2 = 18% 
in youngest quintile versus R2 = 11% in oldest quintile; Fig. 6a). Generic 
prediction intervals were miscalibrated with coverage of 93% and 86% 
for youngest and oldest quintiles instead of the nominal level of 90%. 
In contrast, context-specific prediction intervals had the expected 
90% coverage across all considered contexts. This resulted from vary-
ing prediction interval length by context, with a wider interval com-
pensating for lower prediction accuracy. For example, as CalPred 

estimated a positive impact of age to prediction uncertainty (βσ = 0.15; 
P < 10−30), individuals in youngest/oldest age quintiles had average 
prediction s.d. of 27.4 versus 34.3 mg dl−1 (25% difference; Supplemen-
tary Fig. 11 and Methods). These findings were replicated in All of Us 
and in other traits (Supplementary Figs. 12 and 13), where R2 varied 
across contexts and context-specific prediction intervals achieved 
well calibration across contexts providing per-individual accuracy 
metrics (Supplementary Fig. 14). Next, we sought to examine the joint 
contribution of all considered contexts to variable prediction s.d. 
(instead of separately considering age, PC1 or sex; Fig. 6b). 
Context-specific accuracy was more pronounced by ranking individu-
als by prediction s.d. accounting for impact of all contexts (prediction 
s.d. ranged approximately from 20 mg dl−1 to 45 mg dl−1; Fig. 6b): we 
detected a 44% difference comparing individuals in bottom and top 
deciles of prediction s.d. (25.2 mg dl−1 versus 36.5 mg dl−1; Fig. 6c and 
Supplementary Figs. 15 and 16). This implied that individuals in top 
prediction s.d. decile (characterized by contexts of male, increased 
PC1 and age; Fig. 2c) need to have prediction interval widths increased 
by 44% compared to those in bottom decile.

Extending analysis accounting for all contexts to all traits in UK 
Biobank and All of Us, we determined a widespread large variation 
of context-specific prediction intervals across traits (Fig. 7 and Sup-
plementary Fig. 17). Average differences between top and bottom 
prediction s.d. deciles across traits were 30% and 47%, respectively, 
for UK Biobank and All of Us. Comparing across two datasets, BMI, 
LDL and cholesterol were more heavily influenced by context than 
average, while diastolic blood pressure and HDL were less impacted, 
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Fig. 4 | Simulation studies with gene–context interactions. a, For quantitative 
traits, we simulated traits for individuals in two contexts with 0.7 cross-context 
genetic correlation and heritability of 0.5/0.4, respectively, in two contexts. PGS 
weights were trained in the first context and applied in the second context. We 
showed results for predictions in the second context using four combinations of 
approaches to model prediction mean (using PGS or PGS+PGS×C) and prediction 
variance (with or without VbyC). We did not simulate effects of context variables 
to phenotype and therefore results using ‘PGS + C’ and ‘PGS + C+PGS×C’ would 
yield same results as ‘PGS’ and therefore were not included. Dashed blue line 
denotes the best fit to data; dashed red line denotes model predictions; red 
error bar denotes the CalPred 90% prediction interval for individual at top 5% 
quantile of PGS. Prediction interval coverage was evaluated within data in top 

PGS decile. Additional details can be found in Extended Data Fig. 5 and Methods. 
b, For disease traits, we simulated diseases for individuals in two contexts 
under a liability threshold model with 0.5 heritability, 0.7 cross-context genetic 
correlation and disease prevalence of 10%/20%, respectively, in two contexts 
(blue and green lines). Disease probability was predicted using four sets of 
predictors: (1) PGS; (2) PGS and context variables (PGS + C); (3) PGS and PGS×C 
(PGS + PGS×C); (4) PGS, context variables and PGS×C (PGS + C + PGS×C). VbyC 
led to similar results. Error bars denote observed disease proportions and 
their 95% confidence intervals for each predicted probability bin (n = 2,000 
individuals for each error bar). Additional details can be found in Extended Data 
Fig. 6 and Methods.
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suggesting trait-specific susceptibility to context-specific accuracy. 
There were cases where context specificity of the same trait was drasti-
cally different across datasets. For example, prediction s.d. differences 
for predicting ‘education years’ were 94% in All of Us versus 10% in UK 
Biobank. This disparity probably reflected the more diverse distribu-
tion of ‘education years’ and other social determinants of health in the 
US population sampled in All of Us (Figs. 2 and 3). Such differences 
between datasets highlight that context specificity can be population 
specific and the need to consider characteristics of different popula-
tions in calibration.

We next investigated disease risk prediction for four well-powered 
heritable diseases: T2D50, coronary artery disease51, prostate cancer52 
and breast cancer53 (Extended Data Fig. 10). We first considered a 
baseline model using logistic regression to predict disease probability 
with PGS, age, sex, BMI and top ten PCs as predictors (Methods). We 
evaluated calibration of predicted disease risk—whether predicted 
probability aligned with the observed disease rate. While baseline 
model predictions were calibrated at an aggregate level, they were 
miscalibrated within specific contexts (Fig. 8a). For example, among 
individuals with a predicted T2D risk of approximately 30% (25–35%, 
N = 4,662), the observed proportion with T2D was 30.9% (standard 

error (s.e.), 0.7%). However, this proportion varied significantly with 
individual’s ‘annual household income’: 32.7% (s.e., 2.0%) in the lowest 
income bracket (N = 562) had T2D, compared to only 18.1% (s.e., 2.3%) 
in the highest income bracket (N = 271); T2D risk was consistently 
underestimated for individuals of lower income and overestimated 
for individuals with higher income. The discrepancy suggests that a 
baseline model ignoring disease-relevant contexts produces severely 
miscalibrated probability estimates. We then used a logistic model to 
incorporate contexts, including ‘annual household income’ together 
with their interaction with PGS, to find that predicted disease risk 
was calibrated at the overall level and also within each income group;  
modeling variance by context for disease liability achieved similar cali-
bration (Fig. 8b and Supplementary Figs. 18 and 19) and we discussed 
reasons explaining their similar performances (Methods). Overall, 
our results emphasize the importance of incorporating contexts into 
probability risk calibration to achieve calibrated predictions across 
all considered contexts.

Discussion
Our work adds to the literature of PGS-based prediction. We show 
that context-specific accuracy of PGS is highly pervasive across 
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using a random set of 5,000 training individuals and then evaluated resulting 
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phenotypes among individuals who did not wear glasses. Red lines denote the 
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traits and biobanks with socioeconomic contexts often having larger 
impact than genetic ancestry5,11,13,23,54. We introduce CalPred to esti-
mate context-specific prediction intervals. Compared to other PGS 
calibration approaches, CalPred incorporates context information 
leveraging a calibration dataset (Supplementary Note). For quantita-
tive traits, CalPred provides a framework to quantify individualized 
context-specific generalizability/portability of a given PGS. Prediction 
intervals can be interpreted as a reference range accounting for each 
individual’s contexts providing individual-level uncertainty metrics. 
For example, they can be used to identify individuals having PGS-based 
predictions with exceedingly high uncertainty and inform cases when 
it is not appropriate to report polygenic scoring results because of the 
high instability. For disease traits, we found models that overlooked 
context information resulting in miscalibrated disease probability 
predictions in the presence of gene–context interactions. Such mis-
calibrations are problematic if they lead to over-/under-diagnosis for 
individuals across socioeconomic context groups. To address this, we 
incorporated context variables and PGS×C interactions in PGS-based 
predictions, which led to calibrated predictions across contexts.

We note several limitations of our work. First, we motivated our 
approach for clinical implementation using continuous biomarkers 
and focused on LDL as an example continuous lab value with clinical 
application. Other biomarkers to consider could be prostate-specific 
antigen currently employed for patient stratification for biopsies and 

prostate cancer diagnosis. Recent work has highlighted incorporat-
ing genetically predicted prostate-specific antigen levels improves 
clinical utility by reducing unnecessary biopsies and improving detec-
tion of aggressive form of prostate cancer55. Therefore, lab values 
form a useful system for prediction method development that may 
have clinical implications; actual clinical utility requires thorough 
implementation considering clinical decision processes. Second, 
CalPred requires calibration data that match in distribution with the 
target data, including both distribution of contexts and their impact 
to traits. Otherwise, there may be bias in target samples underrepre-
sented in calibration data. Meanwhile, PGS weights do not need to be 
trained from the same population as the testing population. Third, 
comprehensive profiling of context information is fundamental in 
calibration and interpreting results. In our simulation studies, miss-
ing contexts prevent proper calibration of PGS. In our T2D analysis, 
‘annual household income’ is probably a proxy of contexts such as diet 
and physical exercise that are more directly relevant to T2D. There-
fore, we advocate standardized and comprehensive profiling of con-
texts across biobanks to quantify the role of contexts to PGS accuracy. 
Relatedly, GWAS data collection needs to prioritize diversity not only 
in genetic ancestry, but also across socioeconomic contexts. Fourth, 
context-specific accuracy can arise due to biological genetic effects 
differences across contexts such as gene-by-age and gene-by-sex 
interactions, or because of statistical differences of minor allele 
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Fig. 8 | Calibration of T2D risk prediction across income groups. We compared 
four models for predicting T2D across all individuals in All of Us. ‘Baseline’ is the 
logistic regression model with PGS, age, sex, BMI and top ten PCs as predictors; 
‘Baseline+C’ is the logistic regression model additionally including smoking 
status, drinking, employment, income, current address years and ‘education 
years’; ‘Baseline+C+PGS×C’ additionally includes PGS×C interactions; and 
‘Baseline+C+PGS×C; VbyC’ additionally shows modeling variance by contexts 
within a liability threshold model. The dataset was evenly split into training and 
testing datasets. a, Observed proportion versus predicted probability of T2D for 
lowest (green) and highest (blue) income groups. Error bars denote the observed 

proportions and their 95% confidence intervals (number of total individuals 
shown in key). b, Observed proportion of individuals with T2D among individuals 
predicted with a predicted T2D risk of approximately 30% (25–35%) for baseline 
and calibrated models stratified by annual household income. Error bars denote 
the observed proportions and their 95% confidence intervals (number of 
individuals for each error bar is shown in parentheses). Numerical values of the 
observed proportions were shown in black fonts for ‘<$10,000’ and ‘>$200,000’ 
groups; * and ** denote statistical significance levels for deviations from the 30% 
predicted risk, with * indicating P < 0.05 and ** denoting P < 0.01, respectively 
(two-sided tests); numerical P values were also displayed.
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frequency/linkage disequilibrium patterns contributing to a sub-
stantial proportion of PGS performance differences across genetic 
ancestry. Disentangling various aspects driving context-specific 
accuracy is an ongoing research direction11,16,49. Fifth, this work has 
primarily focused on the impact of PGS on the variability of prediction 
intervals across contexts. However, it is important to note that vari-
able accuracy of other predictors and variable phenotypic variance 
also contribute to our findings. The results presented here regarding 
variable prediction accuracy should be attributed to the collective 
impact of all predictors, rather than solely to PGS. While we have 
determined the substantial contribution of PGS to variable accuracy, 
further quantifying the relative contributions of each predictor is an 
important future direction.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01792-w.
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Methods
Ethical approval
This research complies with all relevant ethical regulations. Ethics 
committee/institutional research board of UK Biobank gave ethical 
approval for collection of the UK Biobank data (https://www.ukbiobank.
ac.uk/learn-more-about-uk-biobank/about-us/ethics). Approval to 
use UK Biobank at an individual level in this work was obtained under 
application 33297 at http://www.ukbiobank.ac.uk. Ethics committee/
institutional research board of All of Us gave ethical approval for col-
lection of All of Us data (https://allofus.nih.gov/about/who-we-are/
institutional-review-board-irb-of-all-of-us-research-program). 
Approval to use All of Us controlled tier data in this work was obtained 
through application at https://www.researchallofus.org.

Constructing calibrated and context-specific prediction 
intervals
We first provide an overview of CalPred framework. CalPred takes as 
input pretrained PGS weights, genotype, phenotype and contexts to 
train a calibration model producing calibrated and context-specific 
prediction intervals for target individuals. We consider a calibration 
dataset with Ncal individuals. For each individual i = 1, …, Ncal, we have a 
genotype vector gi ∈ {0, 1, 2}M with multiple (M) single-nucleotide poly-
morphisms (SNPs) and phenotype yi. Using pretrained PGS weights 
for a given trait βg ∈ ℝM, we calculate PGS in calibration data with g⊤i βg. 
PGS and other contexts including age, sex, genetic ancestry and socio-
economic factors compose each individual i’s contexts ci (all ‘1’ inter-
cepts are also included). Phenotypes are modeled as

yi=𝒩𝒩 (μ (ci) ,σ2 (ci)) ,i = 1,… ,Ncal

μ (ci) =c⊤i βμ,σ2 (ci) = exp (c⊤i βσ) .

There are two main components:

•	 μ (ci) =c⊤i βμ models the baseline prediction mean using predic-
tors of PGS, contexts, as well as PGS×C.

•	 σ2 (ci) = exp (c⊤i βσ) models context-specific variance of y around 
prediction mean. Differential prediction accuracy across 
contexts lead to variable variance around prediction mean 
across contexts. The use of exp (·) is to ensure that the variance 
term ≥0. PGS×C terms are not included for ease of 
interpretation.

We estimate βμ,βσ  leveraging calibration data using restricted 
maximum likelihood for linear model with heteroskedasticity56 (stat-
mod v1.5.0 (ref. 57)). Individual-specific predictive distribution 
𝒩𝒩 (μ̂ (ci) =c⊤i β̂μ,σ̂2 (ci) = exp (c⊤i β̂σ)) can be generated for any target indi-

vidual ci using the fitted β̂μ, β̂σ. The corresponding α-level prediction 
interval (for example, α = 90% for 90% prediction interval) is 

[μ̂ (ci) −Φ
−1 (1 − α

2
) σ̂ (ci) , μ̂ (ci) +Φ

−1 (1 − α
2
) σ̂ (ci)], where Φ−1 is the inverse 

cumulative distribution function of a standard normal distribution 
(for example, Φ−1 (1 − α

2
) = 1.645  for 90% prediction interval). With 

moderate sample size for calibration data (for example, Ncal > 500 as 
validated in our simulation studies), such models can be estimated 
with high precision.

Quantile normalization for nonnormal phenotype distribution. In 
the above, we have assumed that prediction intervals can be modeled 
as a Gaussian distribution, which may not be valid for every phenotype. 
For robust implementation in real data, we apply a transformation 
function Q(⋅) to y with rank-based inverse normal transformation such 
that Q(y) follows a normal distribution; Q(y) can then be modeled using 
methods described above. Fitted prediction intervals can then be 
transformed back into the original y space using Q−1(y).

Model for disease trait within the liability threshold model. CalPred 
model can be extended for disease traits. We first use CalPred to model 
continuous disease liability yliab=𝒩𝒩 (μ (c) ,σ2 (c)), and then integrate out 
scenarios where disease liability is above the threshold 
P (y = 1) = Φ (yliab > 0) = Φ ( μ(c)

σ(c)
) ,  where Φ(⋅) is a link function used in 

logistic or probit regression. Intuitively, this maps the continuous liabil-
ity into disease risk while accounting for liability uncertainty. Disease 
trait probability can be alternatively modeled using a logistic regres-
sion model P (y = 1) = Φ (c⊤βlogistic). In real data analysis (Fig. 8 and Sup-
plementary Fig. 19), we did not observe substantial improvement of 
CalPred model over logistic linear model. To explain this, comparing 
logistic regression model P (y = 1) = Φ (c⊤βlogistic) with CalPred model 

P (y = 1) = Φ ( μ(c)
σ(c)

), we note that c⊤βlogistic can be seen as first-order terms 

in Taylor expansion approximating μ(c)
σ(c)

. Therefore, our observation is 

explained by the fact that linear logistic regression model is a good 
approximation of CalPred disease model.

Quantifying context-specific R2 of PGS
We quantify context-specific prediction accuracy (R2) of PGS, that is, 
to what extent PGS have variable prediction accuracy across contexts 
(including age, sex, genetic ancestry, socioeconomic factors that can 
influence traits58). Identification of contexts contributing to variable 
prediction accuracy is important in constructing calibration model. 
For each pair of context and trait in a population, we calculated predic-
tion accuracy R2 between PGS ̂yi and covariate-regressed phenotypes 
yi (phenotypes for each trait were regressed out of age, sex, age × sex 

and top ten PCs; this adjustment is to better separate the contribution 
of PGS) across each subgroup of individuals defined by contexts. We 
summarized results using relative differences of R2 across context 
groups to baseline R2 calculated across all evaluated individuals (dif-
ferences between two classes for binary contexts; differences between 
top and bottom quintiles for continuous contexts). We calculated 
Spearman’s R2 between point predictions and covariate-regressed 
phenotypes R2 ( ̂y, y) within each context subgroup. We also calculated 
the baseline Spearman’s R2 denoted as R2

all
 across all individuals regard-

less of contexts. We summarized the results for each pair of trait and 

context using the ‘relative ΔR2’ defined as 
R2
group1

−R2
group2

R2
all

. We assessed 

statistical significance of ΔR2 across context subgroups by testing the 
null hypothesis H0 ∶ ΔR2 = 0 using 1,000 bootstrap samples of ΔR2 (in 
each bootstrap sample, the whole dataset was resampled with replace-
ment and ΔR2 were then re-evaluated). Statistical significance was 
assessed using two-sided P values comparing the observed ΔR2 to the 
bootstrap samples of ΔR2.

Relationship between CalPred model and R2. Population-level met-
rics such as R2 can be derived from the model as a function of βσ  and 
distribution of ci. Suppose y = ̂y + e, e ∼ 𝒩𝒩 (0, exp (c⊤βσ)), where y, ̂y, e 
denote phenotypes, point predictions and residual noises. We have

R2 (y, ̂y) = R2 ( ̂y + e, ̂y) = Var [ ̂y]
Var [ ̂y] + Var[e]

Holding Var [ ̂y] as fixed, R2 (y, ̂y)  is a function of Var[e], which is 
determined by the distribution of c and values of βσ. This indicates a 
correspondence between βσ  and R2 (y, ̂y) . Therefore, estimated βσ  can 
also be used as a metric to quantify context-specific accuracy (as used 
in Figs. 2 and 3). While relative ΔR2 is easier to interpret, it assesses the 
marginal contribution of each context separately and require discre-
tization of continuous contexts. Meanwhile, βσ in CalPred model jointly 
account for all contexts in parametric regression, and therefore can 
quantify the unique distribution of each context to variable accuracy. 
On the other hand, even with constant prediction interval length (con-
stant Var[e]), variable R2 can result from variable Var [ ̂y] across context 
groups. While CalPred focuses on modeling Var[e] as a function of 
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contexts to represent variable R2, Var [ ̂y] can change across contexts. 
For example, Var [ ̂y] can vary with contexts if ̂y = PGS × βslope  and the 
slope βslope varies as a function of context. Such variable slope term can 
be modeled with variable slope terms in prediction mean ̂y  (Supple-
mentary Note).

Real data analysis
We analyzed a diverse set of contexts and traits in UK Biobank and All of 
Us (1) to quantify the extent of context-specific prediction accuracy, (2) 
to evaluate context-specific prediction intervals via CalPred for quanti-
tative traits and (3) to evaluate probability prediction for disease traits.

PGS weights. PGS were trained on 370,000 individuals in UK Biobank 
that were assigned to ‘WB’ cluster and 1.1 million HapMap3 (ref. 59) 
SNPs. For each trait, we performed GWAS using PLINK2 (v2.0a3) 
plink2-glm with age, sex and the top 16 PCs as covariates. We estimated 
PGS weights using snp_ldpred2_auto in LDpred2 (ref. 60) (bigsnpr 
v1.8.1) with GWAS summary statistics and in-sample linkage disequi-
librium matrix. These PGS weights were applied to target individuals 
in both UK Biobank and All of Us to obtain individual-level PGS. To train 
PGS weights for All of Us individuals, we overlapped 1.2 million SNPs 
in All of Us quality-controlled microarray data to 12 million SNPs in UK 
Biobank imputed data to obtain a set of 0.8 million SNPs present in both 
datasets. Then we trained and applied PGS weights using these shared 
SNPs in UK Biobank to All of Us individuals. This procedure improves 
PGS accuracy in All of Us by ensuring all SNPs with nonzero weights to 
present in the data.

UK Biobank dataset. We analyzed 490,000 genotyped individuals 
(including both training and target individuals). We used 1.1 million 
HapMap3 (ref. 59) SNPs in all analyses. All UK Biobank individuals are 
clustered into subcontinental ancestry clusters based on the top 16 
precomputed PCs (data field 22009 in ref. 28, as in ref. 7). This pro-
cedure assigned 410,000 individuals into the ‘WB’ cluster. A random 
subset of 370,000 ‘WB’ individuals was used to perform GWAS and 
estimate PGS weights (see above); we trained PGS weights starting 
with individual-level data to avoid overlap of sample between train-
ing and target data. For evaluation, we used the rest of the 120,000 
individuals with genotypes, phenotypes and contexts (including 
individuals from both ~40,000 ‘WB’ individuals and ~80,000 other 
individuals). We focused on analyzing 72 traits with R2 > 0.05 in 
40,000 WB target individuals and/or biological importance). We 
followed https://github.com/privefl/UKBB-PGS/blob/main/code/
prepare-pheno-fields.R and ref. 7 to preprocess trait values (for exam-
ple, log transformation and clipping of extreme values). For each trait, 
we quantile-normalized phenotype values; when performing calibra-
tion, phenotype quantiles were calculated on the basis of calibration 
data and then used to normalize target data. We analyzed 11 contexts 
representing a broad set of socioeconomic and genetic ancestry 
contexts, including binary contexts (sex, ever smoked, wear glasses 
and drinking alcohol) and continuous contexts (top two PCs, age, 
BMI, income, deprivation index and ‘education years’). We note that 
income and ‘education years’ have been processed into five quintiles 
in the original data of UK Biobank.

All of Us dataset. We analyzed 245,000 genotyped individuals with 
diverse genetic ancestry contexts (short read whole genome sequenc-
ing data in release v7). We retained 1.2 million SNPs from microarray 
data after quality control using PLINK2 (v2.0a3) with plink2 --geno 
0.05 --chr 1-22 --max-alleles 2 --rm-dup exclude-all --maf 0.001. We 
used microarray data because it contains more individuals and can be 
analyzed with low computational cost. All individuals with microar-
ray data were used in the evaluation. We analyzed ten traits, including 
height, BMI, WHR, diastolic blood pressure, systolic blood pressure, 
‘education years’, LDL, cholesterol, HDL and triglycerides; they are 

straightforward to phenotype and have large sample sizes. Physical 
measurement phenotypes were extracted from participant-provided 
information. Lipid phenotypes (including LDL, HDL, cholesterol and 
triglycerides) were extracted following https://github.com/all-of-us/
ukb-cross-analysis-demo-project/tree/main/aou_workbench_siloed_
analyses, including procedures of extracting most recent measure-
ments per person, and correcting for statin usage. For each trait, we 
quantile-normalized phenotype values; when performing calibration, 
phenotype quantiles were calculated on the basis of calibration data 
and were then used to normalize target data. We included age, sex, 
age × sex and the top ten in-sample PCs as covariates in the model. 
We also quantile-normalized each covariate and used the average of 
each covariate to impute missing values in covariates. We analyzed 11 
contexts, including binary contexts (sex) and continuous contexts (top 
two PCs, age, BMI, smoking, alcohol, employment, ‘education years’, 
income and number of years living in current address).

Population descriptor usage. We explain our usage choices of popula-
tion descriptor, including the use of the top two PCs to capture genetic 
ancestry/similarity and the use of ‘WB’ in analyses of UK Biobank and 
‘white SIRE’ in analyses of All of Us. We use the top two PCs computed 
across all individuals in UK Biobank or in All of Us, respectively, to 
capture the continuous genetic ancestry variation in each dataset. 
While these two PCs provide major axes of genetic variation (Supple-
mentary Fig. 3), we acknowledge that top two PCs alone are not suffi-
cient to fully capture all variation in the entire population. We used 
discretized PC1 and PC2 subgroups to calculate population-level sta-
tistics such as R2, while we acknowledge that the underlying genetic 
variation is continuous. In UK Biobank, we intended to analyze a set of 
individuals with relatively similar genetic ancestry to perform GWAS 
and derive PGS. We used a set of individuals previously annotated with 
‘WB’ that were identified using a combination of self-reported ethnic 
background and genetic information having very similar ancestral 
backgrounds based on PC analysis results28. In All of Us, we selected a 
set of individuals, with SIRE being ‘white’, to study how PGS have dif-
ferent accuracy across environmental contexts in such a sample 
defined by SIRE. Noting that SIRE is not equivalent to genetic ancestry, 
the contrast of results from UK Biobank and All of Us helps understand 
how genetic and nongenetic factors impact PGS accuracy in a group 
of individuals defined by SIRE or genetic ancestry.

Evaluating context-specific prediction intervals. For quantitative 
traits, noting that prediction mean and standard deviation are μ̂ (c) ,σ̂(c) 
for a target individual with contexts c, we evaluate prediction intervals 
with regard to phenotypes y using metrics of (1) prediction accuracy: 
R2 (μ̂ (c) ,y) ; and (2) coverage of prediction intervals: evaluating 

Pr {y ∈ [μ̂ (ci) −Φ
−1 (1 − α

2
) σ̂ (ci) , μ̂ (ci) +Φ

−1 (1 − α
2
) σ̂ (ci)]} ≈ α , that is, 

whether prediction intervals cover true phenotypes with prespecified 
probability of α. Both metrics are evaluated both across all individuals, 
and within each context subgroup. We generated and evaluated 
context-specific intervals in both UK Biobank and All of Us. The predic-
tion mean includes predictors of PGS, age, age × sex, age2, the top ten 
PCs and the contexts in Figs. 2 and 3. Prediction variance includes pre-
dictors of age, sex, PC1, PC2 and the contexts in Figs. 2 and 3. For each 
trait, we performed evaluation by repeatedly randomly sampling 5,000 
individuals as calibration data and 5,000 individuals as target data (as 
described in ‘constructing calibrated and context-specific intervals’).

Evaluating disease probability predictions. For disease traits, denot-
ing binary disease status as y and predicted probability as ̂p(c), we 
evaluate calibration of disease probability. For each predicted probabil-
ity bin [plow,phigh], we examine whether the observed disease prevalence 

P [y = 1| ̂p(c) ∈ [plow,phigh]]  is approximately equal to plow+phigh

2
. Calibration 

is evaluated for all individuals, and for each context subgroup.

http://www.nature.com/naturegenetics
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We analyzed four well-powered disease trait GWAS in All of Us: 
T2D50,61, coronary artery disease51, prostate cancer52 and breast cancer53. 
We predicted disease probability using four models by incrementally 
adding complexity: (1) ‘Baseline’ used logistic regression using PGS, 
age, age2, sex, age × sex, top ten PCs, BMI and BMI2 as predictors; (2) 
‘Baseline+C’ had additional context predictors of smoking, alcohol, 
employment, ‘education years’, income and number of years living in 
current address; (3) ‘Baseline+C+PGS×C’ had additional PGS×C terms; 
and (4) ‘Baseline+C+PGS×C (VbyC)’ had additional context-specific 
variance as a function of contexts.

Simulation studies of context-specific calibration
We performed simulations for both quantitative and disease traits with 
gene–context interactions.

Simulations of quantitative traits with gene–context interactions. 
For quantitative traits, we evaluated CalPred under three common 
scenarios of gene–context interactions in two contexts. Denoting 
genetic and environmental components in two contexts as G1,G2, E1, E2, 
these three scenarios include (1) imperfect genetic correlation: 
Cor [G1,G2] < 1, Var [G1] = Var[G2] and Var [E1] = Var[E2]; (2) varying genetic 
variance: Cor [G1,G2] = 1 , Var [G1] ≠ Var[G2]  and Var [E1] = Var[E2] ; and  
(3) proportional amplification of genetic and environmental compo-
nents: Cor [G1,G2] = 1, Var [G1] ≠ Var[G2], Var [E1] ≠ Var[E2], while ratios 

between G and E are the same across contexts: Var[G1]
Var[E1]

= Var[G2]
Var[E2]

. Across 

three scenarios, PGS weights derived in the first context were applied 
in both contexts. We evaluated the bias in prediction mean and cover-
age of prediction intervals.

Simulations of disease traits with gene–context interactions. For 
disease traits, we performed simulations with gene–context interac-
tions in two contexts under a liability threshold model. These three 
scenarios include: (1) imperfect genetic correlation, (2) varying genetic 
variance, and (3) varying disease prevalence where G1, E1 and G2, E2 are 
simulated using the same model but the disease prevalence is different 
across contexts. PGS weights derived in the first context were applied 
to individuals in both contexts. We fit four regression models using 
different sets of predictors across all individuals: (1) y ~PGS;  
(2) y ~PGS + context; (3) y ~PGS + PGS×C; (4) y ~PGS + PGS×C + context. We 
note that logistic and probit regression models produced similar results.

Simulations of quantitative traits with multiple contexts. We simu-
lated PGS point predictions ̂y and phenotype values y to simulate traits 
with variable prediction accuracy across genetic ancestry, age and sex. 
We started with real contexts from UK Biobank individuals not used 
for PGS training (see ‘Real data analyses’ section). We quantile- 
normalized each context so they had mean 0 and variance 1. Such 
simulations preserved the correlation between contexts. Given these 
processed contexts, we simulated point predictions ̂y  using a normal 
distribution ̂y∼𝒩𝒩(0, 1), and we simulated phenotypes y with:

y∼𝒩𝒩( ̂y, exp(βσ,0 +∑
c
βσ,c × c)),

where βσ,0 denoted the baseline variance of y, and βσ,c was the effect of 
context c to the variance of y. ‘∑

c
’ enumerated over PC1, age and sex. 

This procedure simulated different variance of y around ̂y for individu-
als with different contexts, as observed in real data. We first selected 
βσ,0 such that R2 (y, ̂y) = 30%  for individuals with average contexts 
(∑

c
βσ,c × c = 0). We simulated data with variable variances and we set 

βσ,age = 0.25, βσ,sex = 0.2,βσ,PC1 = 0.15. These parameters were manually 
chosen to match observed variable R2 in real data. In each simulation, 
we randomly sampled Ncal = 100, 500, 2,500 and 5,000 individuals used 
for estimating the calibration model and Ntest = 5000 individuals for 

evaluation. New point predictions and phenotypes ̂y, y were simulated 
in each simulation. And we quantified prediction accuracy and cover-
age of prediction intervals in each simulation replicate.

Statistics and reproducibility
We analyzed two publicly available datasets of UK Biobank and All 
of Us, and sample sizes were determined in these studies. We did 
not use randomization or blinding. No data were excluded from the 
analyses. We replicated our findings across these two independent  
datasets.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
UK Biobank individual-level genotype and phenotype data are avail-
able through application at http://www.ukbiobank.ac.uk. All of Us 
individual-level genotype and phenotype are available through applica-
tion at https://www.researchallofus.org.

Code availability
Software implementing CalPred and code for processing and main 
analyses is available via GitHub at https://github.com/Kangcheng-
Hou/calpred (ref. 62) and https://github.com/KangchengHou/
calpred-manuscript (ref. 63).
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Extended Data Fig. 1 | Pearson’s correlation between context variables in UK Biobank and All of Us datasets. Pearson correlations were calculated separately 
within individuals annotated with “white British’ in UK Biobank and within individuals with SIRE “white’ in All of Us (a,c) and across all individuals (b,d).
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in All of Us.
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Extended Data Fig. 4 | R2 between covariate-adjusted height and PGS 
across education and income levels in All of Us. R2 were calculated across all 
individuals, and within individuals of European and African genetic ancestry 

(with estimated admixture proportion of the corresponding ancestry > 90%), 
across education levels (a) and income levels (b). Error bars denote  
mean values +/- standard deviation of R2 across 30 bootstrap samples.
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Extended Data Fig. 5 | Quantitative trait simulations with gene-context 
interactions. We simulated three scenarios of gene-context interactions for 
quantitative traits and evaluated calibration of prediction intervals. These 
scenarios include (a) imperfect genetic correlation: Var[G] = 0.5, Var[E] = 0.5 in 
both contexts; genetic correlation=0.5 across contexts. (b) varying heritability: 
Var[G] = 0.5, Var[E] = 0.5 in context 1 and Var[G] = 0.1, Var[E] = 0.9 in context 2; 
genetic correlation=1. (c) joint amplified G and E: Var[G] = 0.25, Var[E] = 0.75 
in context 1 and Var[G] = 0.25*1.5, Var[E] = 0.75*1.5; genetic correlation=1. 
Across three scenarios, PGS weights derived in the first context were applied 
to individuals in both contexts. We show results for individuals in context 2 
using four modeling approaches. “PGS’: PGS and prediction variance calculated 

with individuals from context 1 were applied to individuals in context 2; “PGS; 
VbyC’: fit y ~ N(PGS, VbyC); “PGS+PGSxC’: fit y ~ N(PGS + PGSxC, prediction 
variance derived in context 1); “PGS+PGSxC; VbyC’: fit y ~ N(PGS + PGSxC, VbyC). 
Blue dashed line denotes the best fit to data; red dashed line denotes model 
predictions; red error bar denotes the prediction interval for an individual at 
top 5% quantile of PGS. Prediction interval coverage was evaluated within data 
in top PGS decile. We note these three simulation scenarios did not cover all 
possible modes of gene-context interactions: these models assume gene-context 
interactions act similarly across all causal variants, and they model gene-context 
interactions using PGSxC and VbyC.
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Extended Data Fig. 6 | Disease trait simulations with gene-context 
interactions. We simulated three scenarios of gene-context interactions 
for disease traits using a liability threshold model and evaluated calibration 
of probability prediction. These scenarios include: (a) imperfect genetic 
correlation: Var[G] = 0.5, Var[E] = 0.5, disease prevalence = 10% in both contexts; 
genetic correlation=0.5 across two contexts. (b) varying heritability: Var[G] = 0.5, 
Var[E] = 0.5 in context 1 and Var[G] = 0.1, Var[E] = 0.9 in context 2, disease 
prevalence=10% in both contexts; genetic correlation=1 across two contexts. (c) 
varying disease prevalence: Var[G] = 0.5, Var[E] = 0.5 in both contexts; disease 

prevalence = 10%/20% in context 1/2. Across three scenarios, PGS weights  
derived in the first context were applied to individuals in both contexts. We 
fit four models using different sets of predictors in logistic regression across 
individuals in two contexts (probit regression led to similar results): “PGS’:  
fit y ~ PGS; “PGS + C’: fit y ~ PGS + Context; “PGS+PGSxC’: fit y ~ PGS + 
PGSxContext; “PGS+PGSxC+C’: fit y ~ PGS + PGSxContext + Context. Error bars 
denote observed disease proportions and their 95% confidence intervals for each 
predicted probability bin (n = 2000 individuals for each error bar).
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Extended Data Fig. 7 | Simulations with varying number of individuals, 
unmeasured contexts, excessive dummy contexts. We performed simulations 
to investigate factors that influence coverage of prediction intervals. We 
compared coverage in these alternative scenarios with default scenario (marked 
by ‘Default’ in the figure) where we performed calibration using age, PC1, and sex 
and 5000 individuals as calibration data (same as Fig. 5). (a) Coverage of 
prediction intervals with varying number of individuals used in calibration 
(Ncal = 100, 500, 2500, 5000). We evaluated the coverage both at the overall level 
and within each group (groups are denoted by colors) using 5,000 testing 
individuals. Different box plots with the same color denotes different strata for 
each context (quintile for age and PC1; male/female for sex). We determined 
coverages had more downward bias and higher variance when less individuals are 
used in the calibration. (b) Coverage of prediction intervals when certain context 
variables were not measured. To simulate unmeasured covariate, we performed 

calibration using PC1 and sex only (excluding age). And we determined 
prediction intervals were mis-calibrated along the unmeasured context of age in 
this scenario. (c) Coverage of prediction intervals when including excessive 
dummy contexts in calibration. We simulated dummy variables with no effects to 
phenotype variance (number of dummy covariates Ndummy = 5, 25, 50; drawn from 
N(0,1)) and included them in calibration to investigate the effect of including 
excessive covariates to prediction coverage. We determined coverages had more 
downward bias and higher variance when more dummy variables were used in the 
calibration. For (a-c), each box plot contains results across 100 simulations (each 
box contains n = 100 points). For box plots, the center corresponds to the 
median; the box represents the first and third quartiles of the points; the whiskers 
represent the minimum and maximum points located within 1.5× interquartile 
ranges from the first and third quartiles, respectively.
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Extended Data Fig. 8 | Standardized effects of PGS, contexts, and PGSxC 
interaction terms in quantitative trait prediction in All of Us. We display 
standardized effects of all predictors where they are standardized with mean 

0 and variance 1 in regression analysis. We note that the left figure containing 
effects of PGS and contexts has a different color scale than the right figure 
containing PGSxC interaction terms.
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Extended Data Fig. 9 | Contribution of PGS to inter-individual variation of 
prediction SDs in All of Us. We compared inter-individual variation of prediction 
SDs in two models: (1) prediction mean as a function of all contexts without PGS; 
(2) include PGS as part of prediction mean in the baseline model. Prediction SD 

is modeled as a function of all contexts in both models. By comparing prediction 
SDs in these two models, we found including PGS substantially impacted inter-
individual variation in prediction SD.
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Extended Data Fig. 10 | Standardized effects of PGS, contexts, and 
PGSxC interaction terms in disease trait prediction in All of Us. We show 
standardized effects where all predictor variables are standardized with mean 0 

and variance 1 in regression analysis within all individuals. Left figure containing 
PGS and contexts has different color scale from the right figure containing PGSxC 
interaction terms.
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plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants
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